Kaap 309: Muscular System III (Contraction, Advanced Terminology, Reflexes)

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/18

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

19 Terms

1
New cards

Muscle Twitch

  • response of a muscle to a single stimulation

  • Three periods:

  1. Latent: Delay → stimulus happens, but no contraction yet.

  2. Contraction: Muscle fibers shorten and tension rises

  3. Relaxation: Muscle relaxes, Ca²⁺ goes back to SR.

<ul><li><p>response of a muscle to a single stimulation</p></li><li><p><strong>Three periods: </strong></p></li></ul><ol><li><p><strong>Latent:&nbsp;</strong>Delay → stimulus happens, but no contraction yet.</p></li><li><p><strong>Contraction:</strong>&nbsp;Muscle fibers shorten and tension rises</p></li><li><p><strong>Relaxation:&nbsp;</strong>Muscle relaxes, Ca²⁺ goes back to SR.</p></li></ol><p></p>
2
New cards

Muscle Fatigue

Decreased ability of a muscle to contract despite stimulation (Definition: Muscle cannot contract fully even with stimulation.)

High-Intensity Exercise Causes

  • K⁺ accumulation in T-tubules

  • ADP and Pi buildup → interferes with cross-bridge cycling

Low-Intensity (Long-Duration) Causes

  • Fuel depletion (low glycogen/glucose)

  • Electrolyte loss

  • Central fatigue (reduced neural drive)

3
New cards
<p>Types of contractions</p>

Types of contractions

  • Isometric:

    • Muscle tenses but does not change length (no movement).

    • Example: Holding a plank.

  • Isotonic:

    • Muscle changes length while tension remains constant.

    • Concentric: Muscle shortens (lifting a weight).

    • Eccentric: Muscle lengthens (lowering a weight)

Type

Description

Example

Isotonic (concentric)

Muscle shortens while generating force

Lifting a weight

Isotonic (eccentric)

Muscle lengthens while resisting

Lowering a weight slowly

Isometric

Muscle contracts but doesn’t shorten

Holding a plank or wall sit

<ul><li><p><strong>Isometric:</strong></p><ul><li><p>Muscle <em>tenses</em> but does <strong>not change length</strong> (no movement).</p></li><li><p>Example: Holding a plank.</p></li></ul></li><li><p><strong>Isotonic:</strong></p><ul><li><p>Muscle <strong>changes length</strong> while tension remains constant.</p></li><li><p><strong>Concentric:</strong> Muscle shortens (lifting a weight).</p></li><li><p><strong>Eccentric:</strong> Muscle lengthens (lowering a weight)</p></li></ul></li></ul><p></p><p></p><table style="min-width: 75px;"><colgroup><col style="min-width: 25px;"><col style="min-width: 25px;"><col style="min-width: 25px;"></colgroup><tbody><tr><th colspan="1" rowspan="1" style="box-sizing: inherit; border: 0.1rem solid rgba(0, 0, 0, 0.1); min-width: 10rem; padding: 0.8rem; position: relative; text-align: left; vertical-align: top; font-weight: 700; margin-top: 0px;"><p><strong>Type</strong></p></th><th colspan="1" rowspan="1" style="box-sizing: inherit; border: 0.1rem solid rgba(0, 0, 0, 0.1); min-width: 10rem; padding: 0.8rem; position: relative; text-align: left; vertical-align: top; font-weight: 700;"><p><strong>Description</strong></p></th><th colspan="1" rowspan="1" style="box-sizing: inherit; border: 0.1rem solid rgba(0, 0, 0, 0.1); min-width: 10rem; padding: 0.8rem; position: relative; text-align: left; vertical-align: top; font-weight: 700;"><p><strong>Example</strong></p></th></tr><tr><td colspan="1" rowspan="1" style="box-sizing: inherit; border: 0.1rem solid rgba(0, 0, 0, 0.1); min-width: 10rem; padding: 0.8rem; position: relative; text-align: left; vertical-align: top; margin-top: 0px;"><p><strong>Isotonic (concentric)</strong></p></td><td colspan="1" rowspan="1" style="box-sizing: inherit; border: 0.1rem solid rgba(0, 0, 0, 0.1); min-width: 10rem; padding: 0.8rem; position: relative; text-align: left; vertical-align: top;"><p>Muscle shortens while generating force</p></td><td colspan="1" rowspan="1" style="box-sizing: inherit; border: 0.1rem solid rgba(0, 0, 0, 0.1); min-width: 10rem; padding: 0.8rem; position: relative; text-align: left; vertical-align: top;"><p>Lifting a weight</p></td></tr><tr><td colspan="1" rowspan="1" style="box-sizing: inherit; border: 0.1rem solid rgba(0, 0, 0, 0.1); min-width: 10rem; padding: 0.8rem; position: relative; text-align: left; vertical-align: top; margin-top: 0px;"><p><strong>Isotonic (eccentric)</strong></p></td><td colspan="1" rowspan="1" style="box-sizing: inherit; border: 0.1rem solid rgba(0, 0, 0, 0.1); min-width: 10rem; padding: 0.8rem; position: relative; text-align: left; vertical-align: top;"><p>Muscle lengthens while resisting</p></td><td colspan="1" rowspan="1" style="box-sizing: inherit; border: 0.1rem solid rgba(0, 0, 0, 0.1); min-width: 10rem; padding: 0.8rem; position: relative; text-align: left; vertical-align: top;"><p>Lowering a weight slowly</p></td></tr><tr><td colspan="1" rowspan="1" style="box-sizing: inherit; border: 0.1rem solid rgba(0, 0, 0, 0.1); min-width: 10rem; padding: 0.8rem; position: relative; text-align: left; vertical-align: top; margin-top: 0px;"><p><strong>Isometric</strong></p></td><td colspan="1" rowspan="1" style="box-sizing: inherit; border: 0.1rem solid rgba(0, 0, 0, 0.1); min-width: 10rem; padding: 0.8rem; position: relative; text-align: left; vertical-align: top;"><p>Muscle contracts but doesn’t shorten</p></td><td colspan="1" rowspan="1" style="box-sizing: inherit; border: 0.1rem solid rgba(0, 0, 0, 0.1); min-width: 10rem; padding: 0.8rem; position: relative; text-align: left; vertical-align: top;"><p>Holding a plank or wall sit</p></td></tr></tbody></table><p></p>
4
New cards

Fascicle arrangement

  • Parallel

    • Fibers run parallel to the long axis of the muscle.

    • Can shorten a lot → good range of motion.

    • Example: Sartorius

  • Fusiform

    • Spindle-shaped parallel fibers with a bulge in the middle.

    • Moderate force, good for speed.

    • Example: Biceps brachii

  • Circular

    • Fibers arranged in a circle → control openings.

    • Example: Orbicularis oris (around the mouth)

  • Pennate (feather-like)

    • Fibers attach to tendon at an angle → generate more force, less range.

    • Unipennate: fibers on one side of tendon → Example: Extensor digitorum

    • Bipennate: fibers on both sides → Example: Rectus femoris

    • Multipennate: tendon branches within muscle → Example: Deltoid

<ul><li><p><strong>Parallel</strong></p><ul><li><p>Fibers run <strong>parallel</strong> to the long axis of the muscle.</p></li><li><p>Can <strong>shorten a lot</strong> → good range of motion.</p></li><li><p>Example: Sartorius</p></li></ul></li><li><p><strong>Fusiform</strong></p><ul><li><p>Spindle-shaped <strong>parallel fibers with a bulge in the middle</strong>.</p></li><li><p>Moderate force, good for speed.</p></li><li><p>Example: Biceps brachii</p></li></ul></li><li><p><strong>Circular</strong></p><ul><li><p>Fibers <strong>arranged in a circle</strong> → control openings.</p></li><li><p>Example: Orbicularis oris (around the mouth)</p></li></ul></li><li><p><strong>Pennate</strong> (feather-like)</p><ul><li><p>Fibers attach to <strong>tendon at an angle</strong> → generate <strong>more force, less range</strong>.</p></li><li><p><strong>Unipennate:</strong> fibers on one side of tendon → Example: Extensor digitorum</p></li><li><p><strong>Bipennate:</strong> fibers on both sides → Example: Rectus femoris</p></li><li><p><strong>Multipennate:</strong> tendon branches within muscle → Example: Deltoid</p></li></ul></li></ul><p></p>
5
New cards

Attachments: origin and insertion

• Origin (red):

– “stable” segment of a muscle

– Typically proximal

• Insertion (blue):

– “moveable” segment of a muscle

– Typically distal

Tip: “Origin = Anchor, Insertion = Moves”

<p><strong>• Origin (red):</strong></p><p>– “stable” segment of a muscle</p><p>– Typically proximal</p><p><strong>• Insertion (blue):</strong></p><p>– “moveable” segment of a muscle</p><p>– Typically distal</p><p><strong>Tip:</strong> “Origin = Anchor, Insertion = Moves”</p>
6
New cards

Agonist and Antagonist

• Agonist

– Prime mover of a joint during contraction

• Antagonist

– Opposes the prime mover

  • Agonist (Prime Mover):
    The muscle that does the main work to produce a movement.

    • Example: When you bend your elbow, the biceps is the agonist because it contracts to lift the forearm.

  • Antagonist:
    The muscle that opposes the movement of the agonist.

    • Example: When bending your elbow, the triceps is the antagonist because it stretches and resists the movement.

<p><strong>• Agonist</strong></p><p>– Prime mover of a joint during contraction</p><p><strong>• Antagonist</strong></p><p>– Opposes the prime mover</p><p></p><ul><li><p><strong>Agonist (Prime Mover):</strong><br>The muscle that <strong>does the main work</strong> to produce a movement.</p><ul><li><p>Example: When you <strong>bend your elbow</strong>, the <strong>biceps</strong> is the agonist because it contracts to lift the forearm.</p></li></ul></li><li><p><strong>Antagonist:</strong><br>The muscle that <strong>opposes the movement</strong> of the agonist.</p><ul><li><p>Example: When bending your elbow, the <strong>triceps</strong> is the antagonist because it stretches and resists the movement.</p></li></ul></li></ul><p></p>
7
New cards

Synergists & Fixator

• Synergist

– Assists the prime mover

• Fixator

– Prevents movement, "fixates" a bone, holds bone steady

<p><strong>• Synergist</strong></p><p>– Assists the prime mover</p><p><strong>• Fixator</strong></p><p>– Prevents movement, "fixates" a bone, holds bone steady</p><p></p>
8
New cards

Lever Systems

Class

Arrangement (F = Fulcrum, E = Effort, L = Load)

Example

Notes

1st

F between E & L

Neck (nodding)

Mechanical advantage or disadvantage

2nd

L between F & E

Standing on tiptoes

Always mechanical advantage

3rd

E between F & L

Biceps flexion

Most common in body

  • 1st class: Fulcrum in middle → neck nodding

  • 2nd class: Load in middle → tiptoe → always mechanical advantage

  • 3rd class: Effort in middle → biceps → most common

9
New cards

First class levers

knowt flashcard image
10
New cards

Second class levers

knowt flashcard image
11
New cards

Third class levers

knowt flashcard image
12
New cards

Reflex Arcs

  • Types:

    • Inborn (intrinsic): Unlearned, involuntary (knee-jerk)

    • Learned (acquired): Practice → automatic (riding bike)

  • Properties: Quick, involuntary, stereotyped, requires stimulation

<ul><li><p><strong>Types:</strong></p><ul><li><p><strong>Inborn (intrinsic):</strong> Unlearned, involuntary (knee-jerk)</p></li><li><p><strong>Learned (acquired):</strong> Practice → automatic (riding bike)</p></li></ul></li><li><p><strong>Properties:</strong> Quick, involuntary, stereotyped, requires stimulation</p></li></ul><p></p>
13
New cards

Reflex Properties

  1. Requires stimulation → happens because something triggers it.

  2. Quick → happens fast, before you can think.

  3. Involuntary → you don’t choose to do it.

  4. Stereotyped → same response every time.

Mnemonic: QISS → Quick, Involuntary, Stereotyped, Stimulated

14
New cards

Muscle Spindles

  • modified muscle fibers with the primary function of detecting and signaling muscle length (body movement)

  • Typically found near the musculotendinous junction

  • Proprioceptors

<ul><li><p>modified muscle fibers with the primary function of detecting and signaling muscle length (body movement)</p></li><li><p>Typically found near the musculotendinous junction</p></li><li><p>Proprioceptors</p></li></ul><p></p>
15
New cards

Intrafusal and Extrafusal

• Intrafusal fibers

– Within (inside) the muscle spindle

– Gamma motor neurons

– Sensory (afferent) fibers

 Primary & Secondary

• Extrafusal fibers

– "regular" muscle fibers

– Alpha motor neurons

  • Intra = inside spindle → senses stretch

  • Extra = outside spindle → does the work (contracts the muscle)

<p><strong>• Intrafusal fibers</strong></p><p>– Within (inside) the muscle spindle</p><p>– Gamma motor neurons</p><p>– Sensory (afferent) fibers</p><p> Primary &amp; Secondary</p><p><strong>• Extrafusal fibers</strong></p><p>– "regular" muscle fibers</p><p>– Alpha motor neurons</p><ul><li><p><strong>Intra = inside spindle → senses stretch</strong></p></li><li><p><strong>Extra = outside spindle → does the work (contracts the muscle)</strong></p></li></ul><p></p>
16
New cards
<p>Stretch Reflex</p>

Stretch Reflex

  • help the nerves system smoothly coordinate skeletal mm.

  • What do we need to know?

– Length of the muscle (muscle spindles)

 How much (degree)

 How fast (rate)

<ul><li><p>help the nerves system smoothly coordinate skeletal mm.</p></li><li><p>What do we need to know?</p></li></ul><p>– Length of the muscle (muscle spindles)</p><p> How much (degree)</p><p> How fast (rate)</p><p></p>
17
New cards

[Golgi] Tendon Organs

  • small, loose collagen fibers innervated by 1+ nerve fibers and detect tension

  • Located in the tendons (near the musculotendinous junction)

  • Proprioceptors

<ul><li><p>small, loose collagen fibers innervated by 1+ nerve fibers and detect tension</p></li><li><p>Located in the tendons (near the musculotendinous junction)</p></li><li><p>Proprioceptors</p></li></ul><p></p>
18
New cards
<p>Tendon Reflex</p>

Tendon Reflex

  • help to prevent muscles and tendons from tearing during stretching force

  • What does it need to know?

    • Tension of the muscle (tendon organs)

  • Polysynaptic reflex (results in muscle relaxation)

  1. Afferent impulse to the cerebellum

  2. Contracting muscle is inhibited and antagonist muscle is activated

<ul><li><p>help to prevent muscles and tendons from tearing during stretching force</p></li><li><p>What does it need to know?</p><ul><li><p>Tension of the muscle (tendon organs)</p></li></ul></li></ul><ul><li><p>Polysynaptic reflex (results in muscle relaxation)</p></li></ul><ol><li><p>Afferent impulse to the cerebellum</p></li><li><p>Contracting muscle is inhibited and antagonist muscle is activated</p></li></ol><p></p>
19
New cards

Take Home Points

  • There are three classes of levers found in the human body

  • All reflex arcs must contain 5 essential components and 4 properties

  • Stretch and tendon reflexes are the most common somatic reflexes

  • Stretch Reflex: Protects muscle length → monosynaptic

  • Tendon Reflex: Protects tendons → polysynaptic, relaxes contracting muscle

Tip: Stretch = “length check”, Tendon = “tension check