1/32
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
Axiom of Equality: Reflexivity
∀a : a = a
Axiom of Equality: Symmetry
∀a, b : a = b ⇒ b = a
Axiom of Equality: Transitivity
∀a, b, c : [a = b ∧ b = c] ⇒ a = c
Axiom of ℕ/ℤ: Non-triviality
0 ≠ 1
Axiom of ℕ/ℤ: Compatibility of Addition
∀a, b, c : a = b ⇒ a + c = b + c
Axiom of ℕ/ℤ: Compatibility of Multiplication
∀a, b, c : a = b ⇒ ac = bc
Axiom of ℕ/ℤ: Associativity of Addition
∀a, b, c : (a + b) + c = a + (b + c)
Axiom of ℕ/ℤ: Associativity of Multiplication
∀a, b, c : (ab)c = a(bc)
Axiom of ℕ/ℤ: Commutativity of Addition
∀a, b : a + b = b + a
Axiom of ℕ/ℤ: Commutativity of Multiplication
∀a, b : ab = ba
Axiom of ℕ/ℤ: Additive Identity
∀a : a + 0 = a
Axiom of ℕ/ℤ: Multiplicative Identity
∀a : a · 1 = a
Axiom of ℕ/ℤ: Distributivity
∀a, b, c : a(b + c) = ab + ac
Axiom of ℤ: Integrality (Zero Product)
∀a, b : ab = 0 ⇒ [a = 0 ∨ b = 0]
Axiom of ℤ: Additive Invertibility
∀a, ∃b : a + b = 0
Order Axiom: Reflexivity
∀a : a ≤ a
Order Axiom: Antisymmetry
∀a, b : [a ≤ b ∧ b ≤ a] ⇒ a = b
Order Axiom: Transitivity
∀a, b, c : [a ≤ b ∧ b ≤ c] ⇒ a ≤ c
Order Axiom: Totality
∀a, b : a ≤ b ∨ b ≤ a
Order Axiom: Compatibility of Addition
∀a, b, c : a ≤ b ⇒ a + c ≤ b + c
Order Axiom: Compatibility of Multiplication
∀a, b : [a ≥ 0 ∧ b ≥ 0] ⇒ ab ≥ 0
Logic Law: Idempotence
P ∧ P ≡ P and P ∨ P ≡ P
Logic Law: Domination
P ∧ F ≡ F and P ∨ T ≡ T
Logic Law: Identity
P ∧ T ≡ P and P ∨ F ≡ P
Logic Law: Double Negation
¬(¬P) ≡ P
Logic Law: DeMorgan’s Laws
¬(P ∧ Q) ≡ ¬P ∨ ¬Q and ¬(P ∨ Q) ≡ ¬P ∧ ¬Q
Definition of Implication
P ⇒ Q ≡ ¬P ∨ Q
Logic Law: Negation of Implication
¬(P ⇒ Q) ≡ P ∧ ¬Q
Logic Law: Contrapositive Equivalence
P ⇒ Q ≡ ¬Q ⇒ ¬P
Logic Law: Distributivity
P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)
Negation of Universal Quantifier
¬(∀x P(x)) ≡ ∃x ¬P(x)
Negation of Existential Quantifier
¬(∃x P(x)) ≡ ∀x ¬P(x)
Well-Ordering Principle
Every non-empty set of natural numbers has a least element