f(x)= #
f’(x)= 0
f(x)= mx+b
f’(x)= m
f(x)= x^n
f’(x)= nx^-1
f(x)= k * g(x)
f’(x)= k * g’(x)
f(x)= g(x) + h(x)
f’(x)= g’(x) + h’(x)
f(x)= g(x) - h(x)
f’(x)= g’(x) - h’(x)
f(x)= sinx
f’(x)= cosx
f(x)= cosx
f’(x)= -sinx
f(x)= tanx
f’(x)= sec²x
f(x)= cscx
f’(x)= -cscx * cotx
f(x)= secx
f’(x)= secx * tanx
f(x)= cotx
f’(x)= -csc²x
f(x)= e^x
f’(x)= e^x
f(x)= a^x
f’(x)= a^x *lna
f(x) = log base a of x
f’(x)= 1/(x*lna)
f(x)= lnx
f’(x)= 1/x
product rule
1st d2nd + 2nd * d1st
quotient rule
(low * dhigh - high * dlow)/denominator²