1/16
Flashcards about LC oscillators, Colpitts oscillators, and Hartley oscillators, including key equations and concepts.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
LC Oscillator
A type of oscillator using inductors (L) and capacitors (C) to produce an oscillating signal.
Pi (π) Type Feedback Network
A feedback network consisting of three impedance elements (Z1, Z2, Z3) connected in a Pi configuration.
Node equation at vi in LC oscillator analysis
vi − vo / Z3 + vi / Z1 = 0
Node equation at vo in LC oscillator analysis
vo − vi / Z3 + vo / Z2 + vo − v o / Ro = 0
Feedback factor K(jω) in LC oscillators
K (jω) = vi / v o = Z1Z2 / (Ro (Z1 + Z2 + Z3) + Z2 (Z1 + Z3))
Impedance definition (Zn)
Zn = jXn where Xn = ωL or Xn = −1/ωC
Feedback factor K(jω) with reactances
K (jω) = −X1X2 / (jRo (X1 + X2 + X3) − X2 (X1 + X3))
Phase condition for oscillation
X1 + X2 + X3 = 0
Gain condition at resonant frequency
K (ω0) = X1 / (X1 + X3) = −X1 / X2
Colpitts Oscillator
An LC oscillator configuration using two capacitors (C1, C2) and one inductor (L3).
Impedance values for Colpitts oscillator
Z1 = 1 / jωC1 , Z2 = 1 / jωC2 , Z3 = jωL3
Resonant frequency ω0 for Colpitts oscillator
ω0 = 1 / √(L3 * (C1C2 / (C1 + C2)))
Gain (A) required for Colpitts oscillator
A = C1 / C2 = R2 / R1
Hartley Oscillator
An LC oscillator configuration using two inductors (L1, L2) and one capacitor (C3).
Impedance values for Hartley oscillator
Z1 = jωL1, Z2 = jωL2, Z3 = 1 / jωC3
Resonant frequency ω0 for Hartley oscillator
ω0 = 1 / √(C3 (L1 + L2))
Gain (A) required for Hartley oscillator
A = L2 / L1 = R2 / R1