Considering the node at vi = vn:
\frac{vi - vo}{Z3} + \frac{vi}{Z1} = 0
vo = Z3 \left( \frac{vi}{Z3} + \frac{vi}{Z1} \right) = Z3 \left( \frac{1}{Z3} + \frac{1}{Z1} \right) v_i
Considering the node at v0: \frac{vo - vi}{Z3} + \frac{vo}{Z2} + \frac{vo - v{\text{op-amp output}}}{Ro} = 0 \frac{v{\text{op-amp output}}}{Ro} = \frac{vo}{Z3} + \frac{vo}{Z2} + \frac{vo}{Ro} - \frac{vi}{Z3} = \left( \frac{1}{Z3} + \frac{1}{Z2} + \frac{1}{Ro} \right) vo - \frac{1}{Z3} v_i
Substitution:
v{\text{op-amp output}} = \left(1 + \frac{Z3}{Z1}\right) \left( \frac{Ro}{Z3} + \frac{Ro}{Z2} + \frac{Ro}{Ro} \right) vi - \frac{Ro}{Z3}v_i
Barkhausen criteria application:
K(j\omega) = \frac{-X1X2}{jRo (X1 + X2 + X3) - X2 (X1 + X_3)}
Phase condition requires a real-valued equation:
X1 + X2 + X_3 = 0
Gain condition:
K(\omega0) = \frac{-X1X2}{-X2(X1 + X3)} = \frac{X1}{X1 + X3} = -\frac{X1}{X_2}
X1 and X2 are typically the same component type, their ratio is positive.
If the gain of the amplifier with negative feedback is A, the total gain is:
-A \cdot -\frac{X1}{X2} = |1| \angle 0^{\circ}
A practical system requires a gain of -A to cancel the negative sign of K(\omega_0).
The negative sign indicates the need for an inverting amplifier to correct the phase of K(\omega_0).
Circuit diagram has inductors L1, L2 and capacitor C3.
Derivation of design equations:
Z1 = j\omega L1, Z2 = j\omega L2, Z3 = \frac{1}{j\omega C3}
Satisfying the phase condition:
X1 + X2 + X3 = 0 \implies \omega L1 + \omega L2 - \frac{1}{\omega C3} = 0
Solving for \omega0: \omega0 = \omega = \frac{1}{\sqrt{C3 (L1 + L_2)}}
Satisfying the gain condition:
K(\omega0) = -\frac{X1}{X2} = -\frac{\omega L1}{\omega L2} = -\frac{L1}{L_2}
Total gain achieved with an inverting amplifier:
-A \cdot -\frac{X1}{X2} = 1 \implies A = \frac{L2}{L1} = \frac{R2}{R1}