Integrals & trig Identities to memorize
∫kdx
kx+c
[1/(n+1)]xⁿ⁺¹+c
∫xⁿdx
∫(1/x)dx
ln|x|+c
∫eⁿdn
eⁿ+c
∫cos(x)dx
sin(x)+c
∫sin(x)dx
-cos(x)+c
∫sec²(x)dx
tan(x)+c
∫sec(x)tan(x)dx
sec(x)+c
∫csc(x)cot(x)dx
-csc(x)+c
∫csc²(x)
-cot(x)+c
∫tan(x)dx
ln|sec(u)|+c
∫sec(x)dx
ln|sec(u)+tan(u)|+c
∫*[1/(a²+x²)]dx*
(1/a)tan⁻¹(x/a)+c
∫*[1/(√a²-x²)]dx*
sin⁻¹(x/a)+c
sin(x)/cos(x)
tan(x)
cos(x)/sin(x)
cot(x)
1/csc(x)
sin(x)
1/sec(x)
cos(x)
1/cot(x)
tan(x)
1/sin(x)
csc(x)
1/cos(x)
sec(x)
1/tan(x)
cot(x)
sin²(x)+cos²(x)
1
sec²(x)-tan²(x)
1
csc²(x)-cot²(x)
1