Centroid
Derived from intersection of median lines, always within triangle
Orthocentre
Derived from intersection of altitude lines (may need to be extended), can be outside triangle
Circumcentre
centre of a circle equidistant to vertices, where all triangle vertices lie on circle, derived from intersection of perpendicular bisectors, can be outside triangle
Median
A line that passes through the midpoint of a triangle and through the opposite vertex
Altitude
A line that passes through a vertex of a triangle and passes through the opposite side at a 90Âş angles
Perpendicular bisector
line that intersects a line segment at a 90Âş angle and passes through its midpoint