1/13
Convergence and Divergence Tests
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
geometric sequence
an = arn-1
sum series
∑1/(n+1)(n+a+1)
geometric series test
∑arn-1 converges if and only if |r|<1
divergence test (nth term test)
if limn→∞(an) ≠ 0…
then ∑n=1(an) diverges
integral test
if f(n) = an for all & if f(x) decreases to 0…
∑n=1(an) converges if and only if ∫f(x)dx converges
the harmonic series
1/n
p-test
∑n=1(1/np) converges if and only if p > 1
convergence test (direct comparison test)
if an >= 0 for all n
& bn >= an for all n (bn dominates an)
& ∑bn converges, so does ∑an…
then ∑an converges!
limit comparison test (LCT)
if an > 0 & bn > 0 for any n
& limn→∞(an/bn) converges to a non-zero value…
then ∑n=1(an) & ∑n=1(bn) either BOTH converge or BOTH diverge
ratio test
have ∑n=1(an), with a ≠ 0 & any n…
put ρ = limn→∞|(an+1)/(an)|
then if p > 1, ∑n=1(an) diverges
if p = 1, we don’t know
if p < 1, ∑n=1(an) converges
root test (nth root test)
if an > 0, look at limn→∞(n√an)
if lim DNE, we don’t know
if lim < 1, the series converges
if lim = 1, we don’t know
if lim > 1, the series diverges
alternating series test
if {|an|}n=1 decreases to 0 & {|an|}n=1 alternates (positive to negative), then ∑n=1(an) converges
if ∑n=1(an) converges but ∑n=1|an| diverges, we say the series converges CONDITIONALLY!
if ∑n=1|an| converges, we say the series converges ABSOLUTELY!
error estimate for converging alternating series
power series
a power series is a series in the form ∑n=1(an)(x-xa)n
apply ratio test to find the radius of convergence,
check the endpoints to find the interval of convergence!