1/20
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
modulus-argument form
z = r(cosĪø + isinĪø) where |z| = r arg z = Īø
exponential form
z=re^iĪø
rules for multiplying/dividing complex numbers in mod-arg/exponential form
multiply moduli, add arguments (or the reverse)
exponential form
re^iĪø
Īø in radians
argument of a real number
-Ļ, 0, Ļ
argument of imaginary number
Ļ/2, -Ļ/2
expression for cosĪø
expression for sinĪø
derive the expression for cosĪø from Eulerās relation
derive the expression for sinĪø from Eulerās relation
how to derive a formula for sin(nĪø) and cos(nĪø)
cos(nĪø)+isin(nĪø) = (cosĪø+isinĪø)āæ (de Moivreās theorem)
expand this bracket
the real parts are cos(nĪø) and the imaginary parts are sin(nĪø)
how to change cosāæx/sināæx into sum of multiple angles
express trig function in exponential form
let z=e^iĪø such that cosāæ(x) = Ā½[z+(1/z)] and sin(x)=(1/2i)[z-(1/z)]
expand this using binomial expansion
gather inverse terms together
zāæĀ±(1/zāæ)= 2cos(nĪø)/2sin(nĪø) - de Moivre
done!
integral of cosnĪø
(1/n)[sin(nĪø)]
integral of sin(nĪø)
(-1/n)cosnĪø