AP Calculus AB/BC Formula Sheet

studied byStudied by 0 people
0.0(0)
Get a hint
Hint

Definition of a Limit

1 / 29

30 Terms

1

Definition of a Limit

\lim_{x \to c} f(x) = L means that as (x) approaches (c), (f(x)) approaches (L).

New cards
2

Properties of Limits

Includes limit laws such as the sum, difference, product, and quotient of limits.

New cards
3

Derivative Definition

The derivative of a function (f) at a point (a) is given by: f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.

New cards
4

Power Rule

\frac{d}{dx}(x^n) = nx^{n-1}.

New cards
5

Product Rule

\frac{d}{dx}(uv) = u'v + uv'.

New cards
6

Quotient Rule

\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}.

New cards
7

Chain Rule

\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x).

New cards
8

Definite Integral

The definite integral of (f) from (a) to (b) is given by: \int_a^b f(x) , dx = F(b) - F(a) where (F) is an antiderivative of (f).

New cards
9

Fundamental Theorem of Calculus Part 1

If (F) is an antiderivative of (f) on ([a, b]), then: \int_a^b f(x) , dx = F(b) - F(a).

New cards
10

Fundamental Theorem of Calculus Part 2

If (f) is continuous on ([a, b]), then (F(x) = \int_a^x f(t) , dt) is differentiable and (F'(x) = f(x)).

New cards
11

Critical Points

Points where (f'(x) = 0) or (f'(x)) is undefined.

New cards
12

First Derivative Test

Used to determine local extrema by analyzing the sign of (f'(x)).

New cards
13

Second Derivative Test

If (f''(x) > 0), (f) is concave up; if (f''(x) < 0), (f) is concave down.

New cards
14

Area Under a Curve

The area between the curve (y = f(x)) and the x-axis from (a) to (b) is given by \int_a^b f(x) , dx.

New cards
15

Volume of Revolution - Disk Method

V = \pi \int_a^b [f(x)]^2 , dx.

New cards
16

Volume of Revolution - Washer Method

V = \pi \int_a^b \left([R(x)]^2 - [r(x)]^2\right) , dx.

New cards
17

Convergence Tests (BC Only)

Includes tests such as the Ratio Test, Root Test, and Integral Test.

New cards
18

Taylor Series

The Taylor series of (f(x)) centered at (a) is given by: f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots.

New cards
19

Maclaurin Series

A special case of the Taylor series where (a = 0).

New cards
20

Parametric Equations Derivative

The derivative can be expressed as: \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g'(t)}{f'(t)}.

New cards
21

Arc Length of Parametric Curve

L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} , dt.

New cards
22

Polar Coordinates Definition

In polar coordinates, a point is represented as ((r, \theta)), where (r) is the distance from the origin and (\theta) is the angle.

New cards
23

Conversion to Cartesian Coordinates

x = r \cos(\theta), \quad y = r \sin(\theta).

New cards
24

Derivative in Polar Coordinates

\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{r' \sin(\theta) + r \cos(\theta)}{r' \cos(\theta) - r \sin(\theta)}.

New cards
25

Area in Polar Coordinates

A = \frac{1}{2} \int_a^b [f(\theta)]^2 , d\theta.

New cards
26

Separation of Variables

To solve a differential equation of the form \frac{dy}{dx} = g(x)h(y), separate the variables: \frac{1}{h(y)} , dy = g(x) , dx.

New cards
27

First-Order Linear Differential Equations

Expressed as: \frac{dy}{dx} + P(x)y = Q(x); with integrating factor e^{\int P(x) , dx}.

New cards
28

Mean Value Theorem

If (f) is continuous on ([a, b]) and differentiable on ((a, b)), there exists at least one (c \in (a, b)) such that: f'(c) = \frac{f(b) - f(a)}{b - a}.

New cards
29

L'Hôpital's Rule

If \lim_{x \to c} f(x) = 0 and \lim_{x \to c} g(x) = 0 (or both limits approach (\pm \infty)), then: \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.

New cards
30

Integration by Parts

For integrals of the form \int u , dv: \int u , dv = uv - \

New cards

Explore top notes

note Note
studied byStudied by 5 people
... ago
5.0(1)
note Note
studied byStudied by 14 people
... ago
5.0(1)
note Note
studied byStudied by 79 people
... ago
5.0(4)
note Note
studied byStudied by 2 people
... ago
4.0(1)
note Note
studied byStudied by 73 people
... ago
5.0(1)
note Note
studied byStudied by 27 people
... ago
4.5(2)
note Note
studied byStudied by 9 people
... ago
5.0(1)
note Note
studied byStudied by 32 people
... ago
4.5(2)

Explore top flashcards

flashcards Flashcard (335)
studied byStudied by 33 people
... ago
5.0(1)
flashcards Flashcard (115)
studied byStudied by 14 people
... ago
5.0(1)
flashcards Flashcard (27)
studied byStudied by 6 people
... ago
5.0(1)
flashcards Flashcard (44)
studied byStudied by 8 people
... ago
5.0(1)
flashcards Flashcard (94)
studied byStudied by 3 people
... ago
5.0(1)
flashcards Flashcard (75)
studied byStudied by 307 people
... ago
4.5(2)
flashcards Flashcard (172)
studied byStudied by 2 people
... ago
5.0(1)
flashcards Flashcard (632)
studied byStudied by 70 people
... ago
5.0(1)
robot