When there is indefinite integrals, what do you have to add to the equation?
+ C
∫ 0 dx =
C
∫ k dx =
kx + C
∫ k f(x) dx =
k ∫ f(x) dx
∫ xn dx =
(xn+1)/(n+1) + C, where n = 1
∫ x-1 dx or ∫ 1/x dx =
lnx + C
∫ cosx dx =
sinx + C
∫ sinx dx =
-cosx + C
∫ csc²x dx
-cotx + C
∫ sec²c dx =
tanx + C
∫ cscxcotx dx =
-cscx + C
∫ secx tanx dx =
secx + C
∫ ex dx =
ex + C
∫ ax dx =
(1/ lna)ax + C
Fundamental Theorem of Calculus
∫ f(x) dx = F(b) - F(a), where F is any antiderivative of f, that is, f = F’
d/dx [ ∫xa f(t) dt] =
f(t)
d/dx [ ∫ua f(t) dt] =
f(u) * u’