t/f: if a function is differentiable then it is continuous
true
t/f: if continuous then differentiable
false
t/f: if a function is NOT continuous then NOT differentiable
True
t/f: if NOT differentiable then NOT continuous
false
what graphical features make a function not differentiable
a cusp/sharp corner, a discontinuity, vertical tangent (steep downward hill)
d/dx(sinx)
cosx
d/dx(cosx)
-sinx
d/dx(tanx)
sec²x
d/dx(cotx)
-csc²x
d/dx(secx)
(secx)(tanx)
d/dx(cscx)
-csc(x)cot(x)
d/dx sqrt(x)
1/2sqrt(x)
d/dx e^x
e^x
d/dx lnx
1/x
d/dx b^x
(b^x)(lnb)
d/dx logb(x)
1/(x)(lnb)
AROC equation
y2-y1/x2-x1
definition of a derivative at a point
f’(c)=limx→c f(x)-f(c)/x-c
definition of a derivative as a function
f’(x)= lim h→0 f(x+h)-f(x)/h
power rule definition if f(x)=ax^n
f’(x)=(n•a)x^n-1
power rule example: 3x³
9x²
product rule definition if h(x)=f(x)•g(x)
h’(x)=f’(x)•g(x)+f(x)•g’(x)
product rule example (3x²)(sinx)
6x•sinx+3x²•cosx
quotient rule if h(x)=f(x)/g(x)
h’(x)=f’(x)•g(x)-f(x)•g’(x)/g(x)²
chain rule definition if h(x)=f(g(x))
h’(x)=f’(g(x))•g’(x)
chain rule example: sin²x
2(sinx)•cosx
quotient rule example x²/5x
2x•5x-x²•5/5x²