t/f: if a function is differentiable then it is continuous
true
t/f: if continuous then differentiable
false
t/f: if a function is NOT continuous then NOT differentiable
True
t/f: if NOT differentiable then NOT continuous
false
what graphical features make a function not differentiable
a cusp/sharp corner, a discontinuity, vertical tangent (steep downward hill)
d/dx(sinx)
cosx
d/dx(cosx)
-sinx
d/dx(tanx)
sec²x
d/dx(cotx)
-csc²x
d/dx(secx)
(secx)(tanx)
d/dx(cscx)
-csc(x)cot(x)
d/dx sqrt(x)
1/2sqrt(x)
d/dx e^x
e^x
d/dx lnx
1/x
d/dx b^x
(b^x)(lnb)
d/dx logb(x)
1/(x)(lnb)
AROC equation
y2-y1/x2-x1
definition of a derivative at a point
fâ(c)=limxâc f(x)-f(c)/x-c
definition of a derivative as a function
fâ(x)= lim hâ0 f(x+h)-f(x)/h
power rule definition if f(x)=ax^n
fâ(x)=(nâ˘a)x^n-1
power rule example: 3xÂł
9x²
product rule definition if h(x)=f(x)â˘g(x)
hâ(x)=fâ(x)â˘g(x)+f(x)â˘gâ(x)
product rule example (3x²)(sinx)
6xâ˘sinx+3x²â˘cosx
quotient rule if h(x)=f(x)/g(x)
hâ(x)=fâ(x)â˘g(x)-f(x)â˘gâ(x)/g(x)²
chain rule definition if h(x)=f(g(x))
hâ(x)=fâ(g(x))â˘gâ(x)
chain rule example: sin²x
2(sinx)â˘cosx
quotient rule example x²/5x
2xâ˘5x-x²â˘5/5x²