1/31
Exam revision
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Vector Space (6)
commutativity 2. associativity 3. additive identity 4. additive inverse 5. multiplicative identity 6. distributive
Subspace (3)
additive identity 2. closed under addition 3. closed under scalar multiplication
dim(V+U)=
dimV + dimU -dim(V and U)
Linear Map T: V→W (2)
additivity 2. homogeneity
T: V→W nullT=
{v in V| Tv=0}
T: V→W rangeT=
{Tv | v in V}
Rank theorem: dimV=
dim nullT + dim rangeT
Linear map is ___ and ___ <-> invertible
injective and surjective
T: V→W and S: W→V. ST=e? and TS=e? then S=T-1
T: V→W and S: W→V. ST=eV and TS=eW then S=T-1
Change of basis …
A linear functional is a …
A linear functional is an element of L(V, F), a linear map that sends V to a scaler.
let φj(vi)=____ therefore v=__________
let φj(vi)={1 if j=i and 0 if j≠i therefore v= φ1(v)v1+…+φn(v)vn
norm. ||v||=____
||v||=sqrt(<v,v>)
given an othonormal basis e1,..,en , v=______
v=<v,e1>e1+…+<v,en>en
Adjoint. if T: V→W , T*:___
Adjoint. if T: V→W , T*: W→V
Adjoint. if T: V→W , T*: W→V. <__,__> = <v,T*w>
<Tv,w> = <v,T*w>
T* is T ______ ______
T* is T conjugate transpose
For normal operators TT*=__ and ||Tv||=__
For normal operators TT*=T*T and ||Tv||=||T*v||
Define self-adjoint
T*=T
Positive Operators (2)
self adjoint 2. <Tv,v> ≥ 0
S in L(V,W). S is an isometry when ____
S is an isometry when ||Sv||=||v||
S in L(V,W). S is an unitary when ____ ____
S is an unitary when S is an invertible isometry
The eigenvalues of an unitary are ___
The eigenvalues of an unitary are |1|
A can be QR factorised if it has ____
A can be QR factorised if it has linearly independent columns.
QR factorisation. how to find Q?
Q= gram-schmidt the columns of A
QR factorisation. how to find R?
SVD. the singular values of T. si=
SVD. the singular values of T. si= sqrt(eigenvalues of T*T)
SVD. ei=
SVD. ei= the normalised eigenspaces of T*T
SVD. fi=
SVD. fi= 1/si Tei
SVD. Tv=_____+…+_____
SVD. Tv= s1<v,e1>f1+…+sn<v,en>fn
Matrix SVD: A = M(T) = ___
Matrix SVD: A = M(T) = FSE*
Inner Product (5)
positivity 2. definiteness 3. additivity in first slot 4. homogeneity in first slot 5. conjugate symmetry