BC Calc Memory Quiz

5.0(1)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/68

flashcard set

Earn XP

Description and Tags

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

69 Terms

1
New cards

definition of continuity

lim (x→c⁻) f(x)=lim(x→c⁺)f(x)=f(c) OR lim(x→c)f(x)=f(c)

2
New cards

Intermediate Value Theorem

(a) since f is continuous on [a,b] and

(b) f(a)<k<f(b),

(c) IVT guarantees at least one c in (a,b) such that f(c)=k

3
New cards

chain rule

(d/dx)(f(g(x)))=f’(g(x))*g’(x)

4
New cards

product rule

(d/dx)[f*g]= f’g+fg’

5
New cards

quotient rule

(d/dx)[f/g]= (f’g-fg’)/g²

6
New cards

(d/dx) sinu

cosu(u’)

7
New cards

(d/dx) cosu

-sinu(u’)

8
New cards

(d/dx) tanu

sec²u(u’)

9
New cards

(d/dx) cotu

-csc²u(u’)

10
New cards

(d/dx) secu

secutanu(u’)

11
New cards

(d/dx) cscu

-cscucotu(u’)

12
New cards

extreme value theorem

since f is a continuous function on [a,b] must have a maximum and minimum value within that interval.

13
New cards

relative/local extrema

a high/low point relative to the points around it; can only occur at a critical value.

14
New cards

Absolute Extremum (Min/Max)

the highest/lowest point on a given interval; can occur at a critical value OR an endpoint.

15
New cards

Mean Value Theorem(MVT)

Since f is continuous on [a, b] and differentiable on (a, b) MVT guarantees that there exists an x-value such that f’(x)=(f(b)-f(a))/(b-a)

16
New cards

∫(cosu)du

sin u +C

17
New cards

∫(sinu)du

-cos u +C

18
New cards

∫(sec²u)du

tan u +C

19
New cards

∫(csc²u)du

-cot u +C

20
New cards

∫(secutantu)du

sec u +C

21
New cards

∫(cscucotu)du

-csc u +C

22
New cards

1st FTC

∫(a to b) ƒ’(x)dx=f(b)-f(a)

23
New cards

2nd FTC

(d/dx)∫(u to v) g(t)dt=g(v)(v’)-g(u)(u’)

24
New cards

average value of a function on [a,b]

(1/(b-a))∫(a to b) f(x)dx

25
New cards

displacement

∫(a to b) v(t)dt

26
New cards

total distance

∫(a to b) |v(t)| dt

27
New cards

∫(tanu)du

-ln|cos u|+C

28
New cards

∫(cotu)du

ln|sin u| +C

29
New cards

∫(secu)du

ln|secu+tanu|+C

30
New cards

∫(cscu)du

-ln|cscu+cotu|+C

31
New cards

inverse derivative

(f⁻¹)’(x)=1/(f’(f⁻¹(x))

32
New cards

(d/dx)[eⁿ]

eⁿ+c

33
New cards

(d/dx)[aⁿ]

aⁿ(ln a) n’

34
New cards

(d/dx)ln u

u’/u

35
New cards

(d/dx) logₙu

u’/(u (ln n))

36
New cards

∫eⁿdn

eⁿ+C

37
New cards

∫aⁿdn

aⁿ/lna +C

38
New cards

∫(1/u)du

ln |u| +C

39
New cards

(d/dx)[arcsin u]

u’/√(1-u²)

40
New cards

(d/dx) [arctan u]

u’/(1+u²)

41
New cards

(d/dx)[arcsecu]

u’/(u√(u²-1))

42
New cards

(d/dx)[arccosu]

-u’/√(1-u²)

43
New cards

(d/dx)[arccotu]

-u’/(1+u²)

44
New cards

(d/dx) [arccsc u]

-u’/(u√(u²-1))

45
New cards

∫(1/√(a²-u²))du

arcsin (u/a) +C

46
New cards

∫(1/(a²+u²))du

(1/a) arctan (u/a) +C

47
New cards

exponential growth/decay

if dy/dt=ky, then y=c(e^kt)

48
New cards

logistics equation

if dy/dt =ky(1-(y/L)), then y=L/(1+C(e^-kt))

49
New cards

area between two curves

∫(a to b) (top-bottom)dx OR ∫(a to b) (right-left)dy

50
New cards

volume disk method

v=π(∫(a to b) R²dx

51
New cards

Volume washer method

v=π(∫(a to b) (R²-r²)dx

52
New cards

Volume shell method

v=2π(∫(a to b) (ph)dx

53
New cards

solids of known cross-section

v=(∫(a to b) A(x)dx

54
New cards

arc length

L=∫(a to b) √(1+[f’(x)]²)dx

55
New cards

Surface Area

S=∫(a to b) 2πr√(1+[f’(x)]²)dx

56
New cards

integration by parts

∫u dv = uv-∫v du

57
New cards

Taylor Series

f(x) = f(c)+f’(c)(x-c)+f’’(c)(x-c)²/2!+…+fⁿ(c)(n-c)ⁿ/n!

58
New cards

Taylor series for e^x (centered at 0)

1+x+x²/2!+x³/3!+…+xⁿ/n! (for all real numbers)

59
New cards

Taylor series for sin x (centered at 0)

x-x³/3!+x⁵/5!-x⁷/7!+…+(-1)ⁿx²ⁿ⁺¹/(2n+1)! (for all real numbers)

60
New cards

taylor series for cos x (centered at 0)

1-x²/2!+x⁴/4!-x⁶/6!+…+(-1)ⁿx²ⁿ/(2n)! (for all real numbers)

61
New cards

power series for 1/(1-x)

1+x+x²+x³+x⁴+…+xⁿ (for -1<x<1)

62
New cards

Alternating series error

error≤|Aₙ₊₁|

63
New cards

Lagrange error

error≤|fⁿ⁺¹(max)|/(n+1)!×(x-c)ⁿ

64
New cards

parametric equation slope

dy/dx= (dy/dt)/(dx/dt)

65
New cards

Parametric 2nd derivative

d²y/dx²=(d/dt)[dy/dx]/(dx/dt)

66
New cards

parametric speed

√[(dx/dt)²+(dy/dt)²]

67
New cards

parametric arc length (aka total distance

L=∫(a to b) √[(dx/dt)²+(dy/dt)²] dt

68
New cards

polar area

A=½∫(a to b) r²dθ

69
New cards

Polar parametrics

x=r cosθ and y=r sinθ