BC Calc Memory Quiz

studied byStudied by 32 people
5.0(1)
learn
LearnA personalized and smart learning plan
exam
Practice TestTake a test on your terms and definitions
spaced repetition
Spaced RepetitionScientifically backed study method
heart puzzle
Matching GameHow quick can you match all your cards?
flashcards
FlashcardsStudy terms and definitions

1 / 68

flashcard set

Earn XP

Description and Tags

69 Terms

1

definition of continuity

lim (x→c⁻) f(x)=lim(x→c⁺)f(x)=f(c) OR lim(x→c)f(x)=f(c)

New cards
2

Intermediate Value Theorem

(a) since f is continuous on [a,b] and

(b) f(a)<k<f(b),

(c) IVT guarantees at least one c in (a,b) such that f(c)=k

New cards
3

chain rule

(d/dx)(f(g(x)))=f’(g(x))*g’(x)

New cards
4

product rule

(d/dx)[f*g]= f’g+fg’

New cards
5

quotient rule

(d/dx)[f/g]= (f’g-fg’)/g²

New cards
6

(d/dx) sinu

cosu(u’)

New cards
7

(d/dx) cosu

-sinu(u’)

New cards
8

(d/dx) tanu

sec²u(u’)

New cards
9

(d/dx) cotu

-csc²u(u’)

New cards
10

(d/dx) secu

secutanu(u’)

New cards
11

(d/dx) cscu

-cscucotu(u’)

New cards
12

extreme value theorem

since f is a continuous function on [a,b] must have a maximum and minimum value within that interval.

New cards
13

relative/local extrema

a high/low point relative to the points around it; can only occur at a critical value.

New cards
14

Absolute Extremum (Min/Max)

the highest/lowest point on a given interval; can occur at a critical value OR an endpoint.

New cards
15

Mean Value Theorem(MVT)

Since f is continuous on [a, b] and differentiable on (a, b) MVT guarantees that there exists an x-value such that f’(x)=(f(b)-f(a))/(b-a)

New cards
16

∫(cosu)du

sin u +C

New cards
17

∫(sinu)du

-cos u +C

New cards
18

∫(sec²u)du

tan u +C

New cards
19

∫(csc²u)du

-cot u +C

New cards
20

∫(secutantu)du

sec u +C

New cards
21

∫(cscucotu)du

-csc u +C

New cards
22

1st FTC

∫(a to b) ƒ’(x)dx=f(b)-f(a)

New cards
23

2nd FTC

(d/dx)∫(u to v) g(t)dt=g(v)(v’)-g(u)(u’)

New cards
24

average value of a function on [a,b]

(1/(b-a))∫(a to b) f(x)dx

New cards
25

displacement

∫(a to b) v(t)dt

New cards
26

total distance

∫(a to b) |v(t)| dt

New cards
27

∫(tanu)du

-ln|cos u|+C

New cards
28

∫(cotu)du

ln|sin u| +C

New cards
29

∫(secu)du

ln|secu+tanu|+C

New cards
30

∫(cscu)du

-ln|cscu+cotu|+C

New cards
31

inverse derivative

(f⁻¹)’(x)=1/(f’(f⁻¹(x))

New cards
32

(d/dx)[eⁿ]

eⁿ+c

New cards
33

(d/dx)[aⁿ]

aⁿ(ln a) n’

New cards
34

(d/dx)ln u

u’/u

New cards
35

(d/dx) logₙu

u’/(u (ln n))

New cards
36

∫eⁿdn

eⁿ+C

New cards
37

∫aⁿdn

aⁿ/lna +C

New cards
38

∫(1/u)du

ln |u| +C

New cards
39

(d/dx)[arcsin u]

u’/√(1-u²)

New cards
40

(d/dx) [arctan u]

u’/(1+u²)

New cards
41

(d/dx)[arcsecu]

u’/(u√(u²-1))

New cards
42

(d/dx)[arccosu]

-u’/√(1-u²)

New cards
43

(d/dx)[arccotu]

-u’/(1+u²)

New cards
44

(d/dx) [arccsc u]

-u’/(u√(u²-1))

New cards
45

∫(1/√(a²-u²))du

arcsin (u/a) +C

New cards
46

∫(1/(a²+u²))du

(1/a) arctan (u/a) +C

New cards
47

exponential growth/decay

if dy/dt=ky, then y=c(e^kt)

New cards
48

logistics equation

if dy/dt =ky(1-(y/L)), then y=L/(1+C(e^-kt))

New cards
49

area between two curves

∫(a to b) (top-bottom)dx OR ∫(a to b) (right-left)dy

New cards
50

volume disk method

v=π(∫(a to b) R²dx

New cards
51

Volume washer method

v=π(∫(a to b) (R²-r²)dx

New cards
52

Volume shell method

v=2π(∫(a to b) (ph)dx

New cards
53

solids of known cross-section

v=(∫(a to b) A(x)dx

New cards
54

arc length

L=∫(a to b) √(1+[f’(x)]²)dx

New cards
55

Surface Area

S=∫(a to b) 2πr√(1+[f’(x)]²)dx

New cards
56

integration by parts

∫u dv = uv-∫v du

New cards
57

Taylor Series

f(x) = f(c)+f’(c)(x-c)+f’’(c)(x-c)²/2!+…+fⁿ(c)(n-c)ⁿ/n!

New cards
58

Taylor series for e^x (centered at 0)

1+x+x²/2!+x³/3!+…+xⁿ/n! (for all real numbers)

New cards
59

Taylor series for sin x (centered at 0)

x-x³/3!+x⁵/5!-x⁷/7!+…+(-1)ⁿx²ⁿ⁺¹/(2n+1)! (for all real numbers)

New cards
60

taylor series for cos x (centered at 0)

1-x²/2!+x⁴/4!-x⁶/6!+…+(-1)ⁿx²ⁿ/(2n)! (for all real numbers)

New cards
61

power series for 1/(1-x)

1+x+x²+x³+x⁴+…+xⁿ (for -1<x<1)

New cards
62

Alternating series error

error≤|Aₙ₊₁|

New cards
63

Lagrange error

error≤|fⁿ⁺¹(max)|/(n+1)!×(x-c)ⁿ

New cards
64

parametric equation slope

dy/dx= (dy/dt)/(dx/dt)

New cards
65

Parametric 2nd derivative

d²y/dx²=(d/dt)[dy/dx]/(dx/dt)

New cards
66

parametric speed

√[(dx/dt)²+(dy/dt)²]

New cards
67

parametric arc length (aka total distance

L=∫(a to b) √[(dx/dt)²+(dy/dt)²] dt

New cards
68

polar area

A=½∫(a to b) r²dθ

New cards
69

Polar parametrics

x=r cosθ and y=r sinθ

New cards

Explore top notes

note Note
studied byStudied by 6 people
862 days ago
5.0(1)
note Note
studied byStudied by 5 people
337 days ago
5.0(1)
note Note
studied byStudied by 19 people
821 days ago
5.0(1)
note Note
studied byStudied by 8 people
658 days ago
5.0(1)
note Note
studied byStudied by 68 people
841 days ago
5.0(1)
note Note
studied byStudied by 25 people
889 days ago
5.0(1)
note Note
studied byStudied by 24 people
176 days ago
5.0(1)

Explore top flashcards

flashcards Flashcard (50)
studied byStudied by 4 people
503 days ago
5.0(1)
flashcards Flashcard (189)
studied byStudied by 226 people
341 days ago
5.0(2)
flashcards Flashcard (33)
studied byStudied by 51 people
13 days ago
5.0(1)
flashcards Flashcard (47)
studied byStudied by 52 people
357 days ago
5.0(4)
flashcards Flashcard (34)
studied byStudied by 21 people
146 days ago
5.0(2)
flashcards Flashcard (51)
studied byStudied by 1 person
834 days ago
4.0(1)
flashcards Flashcard (258)
studied byStudied by 2 people
818 days ago
5.0(1)
flashcards Flashcard (138)
studied byStudied by 166 people
819 days ago
5.0(3)
robot