1/126
Flashcards covering derivatives, theorems, and applications of calculus.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
What does lim (x→a-) f(x) represent?
The limit of f(x) as x approaches a from the left.
What does lim (x→a+) f(x) represent?
The limit of f(x) as x approaches a from the right.
How do you find critical points?
f'(x) = 0 or undefined
What is the condition for a function to be increasing?
f' >= 0
What is the condition for a function to be decreasing?
f' <= 0
What is the condition for a relative minimum?
f' changes from negative to positive.
What is the condition for a relative maximum?
f' changes from positive to negative.
How do you find absolute extrema?
Check endpoints and critical points.
What is the condition for concave up?
f'' > 0 or f' is increasing
What is the condition for concave down?
f'' < 0 or f' is decreasing
What is a point of inflection?
f'' changes sign (concavity changes).
What is the definition of the derivative?
ext{lim (h→0) } \frac{f(x+h) - f(x)}{h}
What is the alternate form of the definition of the derivative at x=c?
ext{lim (x→c) } \frac{f(x) - f(c)}{x - c}
What is the equation of the tangent line at x = a?
y = f(a) + f'(a)(x - a)
What does L'Hôpital's Rule state?
If ext{lim (x→a) } \frac{f(x)}{g(x)} is indeterminate, then ext{lim (x→a) } \frac{f(x)}{g(x)} = \text{lim (x→a) } \frac{f'(x)}{g'(x)}
What is the product rule?
f'(x)g(x) + f(x)g'(x)
What is the quotient rule?
\frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}
What is the derivative of an inverse function?
(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} or g'(x) = \frac{1}{f'(g(x))}
What does the Mean Value Theorem state?
If f(x) is continuous on [a, b] and differentiable on (a, b), then there exists a number c in (a, b) such that f'(c) = \frac{f(b) - f(a)}{b - a}
Velocity =
s'(t)
Acceleration =
= v'(t)=s''(t)
Speed (parametric) =
\text{√}((x'(t))^2 + (y'(t))^2)
Polar Coordinates
x = r cos θ, y = r sin θ
Pythagorean Identities
cos²x + sin²x = 1
1+tan²x = sec²x
1 + cot²x = csc²x
Alternating Remainder
|Rn| = |S - Sn
Chain Rule
If y = f(g(x)), then y' = f'(g(x))g'(x)
OR
\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{\mathrm{d} y}{\mathrm{d} u} \cdot \frac{\mathrm{d} u}{\mathrm{d} x}
Derivative of xn
nxn-1
Derivative of sin(x)
cos(x)
Derivative of cos(x)
-sin(x)
tan(x)
sec²(x)
cot(x)
-csc²(x)
sec(x)
sec(x)tan(x)
csc(x)
-csc(x)cot(x)
arcsin(u)
\frac{u^{\prime}}{\sqrt{1-u^2}}
arccos(u)
\frac{-u^2}{\sqrt{1-u^2}}
arctan(u)
\frac{u^{\prime}}{1+u^2}
arccot(u)
\frac{-u^{\prime}}{1+u^2}
arcsec(u)
\frac{u^{\prime}}{\left|u\right|\sqrt{u^2-1}}
arccsc(u)
\frac{-u^2}{\left|u\right|\sqrt{u^2}-1}
Derivative of e^{u}
e^{u} du
a^{u} e of ln(u)
\frac{u^{\prime}}{u}
Derivative of a^{u}
a^{u} ln(a)u’
Derivative of \log_{a}u
\frac{u^{\prime}}{u\ln a}
Rolle’s Theorem
If f(x) is continuous on [a,b] and differentiable on (a,b) and f(a) = f(b), then there exists a number “c” on (a,b) such that f’(c ) = 0.
The Fundamental Theorem of Calculus
\int_{a}^{b}f\left(x\right)\!\,dx=F\left(b\right)-F\left(a\right)
2nd FTC
\frac{d}{dx}\int_{a}^{x}f(t)dt=f(x)
\frac{d}{dx}\int_{a}^{g(x)}f(t)dt=f(g(x))g'(x)
Mean Value Theorem for Integrals
f(c)=\frac{1}{b-a}\int_{a}^{b}f(x)dx
Solids of Revolution and Friends:
Disk Method
v=\pi\int_{a}^{b}\left[ R\left(x\right)\right]^2dx
OR
v=\pi\int_{c}^{d}\left[ R(y)^2\right]dy
Solids of Revolution and Friends:
Washer Method
v=\pi \int_{a}^{b} \left(R(x)^2 - r(x)^2\right) dx or dy
Solids of Revolution and Friends:
General Volume Equation
v=\int_{a}^{b} \left(Area\right) dx
Solids of Revolution and Friends:
General Volume Equation
v=\int_{a}^{b} \left(Area\right) dx
Arc Length (Rectangular)
\int_{a}^{b}\sqrt{1+[f'(x)]^2} dx or g’(y) and dy.
Arc Length (Parametric)
\int{t_1}^{t_2} \sqrt{ (x'(t))^2 + (y'(t))^2 } dt
Arc Length (Polar)
\int_{a}^{b}\sqrt{r^2+\left(\frac{dr}{d\theta}\right)^2}d\theta
Distance, Velocity, and Acceleration
S9T) is the ___ function?
Position
Distance, Velocity, and Acceleration
<x(t),y(t)> is the ___ in parametric?
Position
Distance, Velocity, and Acceleration
Velocity = ___
S’(t)
Distance, Velocity, and Acceleration
Acceleration = ___
v’(t) = s’’(t)
Distance, Velocity, and Acceleration
Velocity Vector = ___
<x’(t), y’(t)>
Distance, Velocity, and Acceleration
Acceleration Vector = ___
<x’’(t), y’’(t)>
Distance, Velocity, and Acceleration
speed (parametric)
|v(t)| = ___
\sqrt{\left\lbrack x^{\prime}\left(t\right)\left\rbrack^2+\right.\left\lbrack y^{\prime}\left(t\right)\right\rbrack^2\right.}
Distance, Velocity, and Acceleration
Displacement = ___
\int_{a}^{b}v(t)dt
Distance, Velocity, and Acceleration
Distance (rectangular and parametric):
\int_{a}^{b}\!\left|v\left(t\right)\right|\,dt=\int_{a}^{b}\!\left(speed\right)\,dt
Distance, Velocity, and Acceleration
Average Velocity = ___
\frac{S\left(b\right)-S\left(a\right)}{b-a}
and
\frac{1}{b-a}\int_{a}^{b}\!v\left(t\right)\,dt
Euler’s Method
n | x_{n} | y_{n}=y_{n-1}+hF\left(x_0,y_0\right) |
0 | 0 | given |
. | . | x_{n}=x_{n-1}+h,h=\Delta x |
Integration by Parts
\int_{}^{}\!u\,dv=uv-\int_{}^{}\!v\,du
Logistics
dy/dt = ___
ky\left(1-\frac{y}{L}\right)
Logistics
y = ___
\frac{L}{1+Ce^{-kt}}
Logistics
C = ___
\frac{L-y_0}{y_0}
Logistics
\lim_{t\rightarrow\infty}y\left(t\right)= ___
L
Logistics
What does y represent?
Population
Logistics
When is population increasing fastest?
\frac{L}{2}
Parametric Equations
\frac{dy}{dx} = ?
\frac{\frac{dy}{dt}}{\frac{dx}{dt}}
Parametric Equations
\frac{d^2y}{dx^2} = ?
\frac{\frac{d}{dt}\left[\frac{dy}{dx}\right]}{\frac{dx}{dt}}
Polar Curves
Area = ?
\int_{a}^{b}\frac12r^2\,d\theta
Polar Curves
Slope = \frac{\mathbb{d}y}{\mathbb{d}x} = ?
\frac{\mathbb{d}y}{\mathbb{d}x} = \frac{\frac{\mathbb{d}y}{\mathbb{d}\theta}}{\frac{\mathbb{d}x}{\mathbb{d}\theta}} = \frac{\frac{\mathbb{d}r}{\mathbb{d}\theta} \sin(\theta) + r \cos(\theta)}{\frac{\mathbb{d}r}{\mathbb{d}\theta} \cos(\theta) - r \sin(\theta)}
Taylor Series
f(c) + f'(c)(x-c) + \frac{f''(c)(x-c)^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)(x-c)^n}{n!}
Maclaurin Series
f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \cdots
Maclaurin Series
e^{x}=?
1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^{n}}{n!}
Maclaurin Series
\cos x = ?
1-\frac{x^2}{2!}+\frac{x^4}{4!}-...+\frac{\left(-1\right)^{n}x^2n}{\left(2n\right)!}
Maclaurin Series
\sin x = ?
x-\frac{x^3}{3!}+\frac{x^5}{5!}-...+\frac{\left(-1\right)^{n}x^{2n-1}}{\left(2n+1\right)!}
Maclaurin Series
\frac{1}{1-x} = ?
1+x+x^2+x^3+...+x^{n}
Maclaurin Series
\ln\left(x+1\right) = ?
x-\frac{x^2}{2}+\frac{x^3}{3}-...+\frac{\left(-1\right)^{n-1}x^{n}}{n}
Alternating Remainder
\left|R_{n}\right|=?
If the alternating series converges to 0 anda_{n+1}\le a_{n} , then
\left|S-S_{n}\right|\le a_{n+1}\larr 1st neglected term
Lagrange Error
\left|R_{n}\left(x\right)\left|\le\right.\right. ?
max value off^{\left(n+1\right)}on\left\lbrack x,c\right\rbrack\left(x-c\right)^{n+1}
\left(n+1\right)!
Trig Identities: Double Angles
sin(2x) = ?
2\sin x\cos x
Trig Identities: Double Angles
cos(2x) = ?
\cos^2\left(x\right)-\sin^2\left(x\right)
2\cos^2\left(x\right)-1
1-\sin^2\left(x\right)
Trig Identities: Double Angles
\sin^2\left(x\right)=?
\frac{1-\cos\left(2x\right)}{2}
Trig Identities: Double Angles
\cos^2\left(x\right)=?
\frac{1+\cos\left(2x\right)}{2}
Trig Identities: Reciprocal Identities
csc(x) = ?
\frac{1}{\sin\left(x\right)}
Trig Identities: Reciprocal Identities
sec(x) = ?
\frac{1}{\cos\left(x\right)}
Trig Identities: Reciprocal Identities
cot(x)
\frac{1}{\tan\left(x\right)}
Trig Identities: Ratio Identities
tan(x) = ?
\frac{\sin\left(x\right)}{\cos\left(x\right)}
Trig Identities: Ratio Identities
cot(x) = ?
\frac{\cos\left(x\right)}{\sin\left(x\right)}
Trig Identities: Pythagorean Identities
\sin^2\left(x\right)+\cos^2\left(x\right)=?
1
Trig Identities: Pythagorean Identities
1+\tan^2\left(x\right)=?
\sec^2\left(x\right)
Trig Identities: Pythagorean Identities
1+\cot^2\left(x\right)
\csc^2\left(x\right)
Other Integration Rules:
\int_{}^{}\!x^{n}\,dx=?
\frac{1}{n+1}x^{n+1}+c
Other Integration Rules:
\int_{}^{}\!\tan u\,du=?
\ln\left|\sec\left(u\right)\right|+c or -\ln\left|\cos\left(u\right)\right|+c
Other Integration Rules:
\int_{}^{}\!\sec\left(u\right)\,du
\ln\left|\sec\left(u\right)+\tan\left(u\right)\right|+c