1/42
Forty Q&A flashcards summarizing the principal skills, formulas and results appearing in the two-page Math Placement Exam practice set.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
6 − 2√2
1) What is the rationalized form of 14 ⁄ (3 + √2)?
(x² + 3ax − 12x − 6a) ⁄ [2x(x + a)]
2) Simplify (x + 2a − 3)/(x + a) − (x + 6)/(2x).
(2x + 5y)/(x + 4y)
3) Reduce (6x² + 11xy − 10y²)/(3x² + 10xy − 8y²) to lowest terms.
Take the reciprocal of a^(3⁄4); i.e., a^(−3⁄4)=1⁄(a^(3⁄4)).
4) What does a negative fractional exponent such as a^(−3⁄4) tell you to do?
x = 25⁄4 (6.25)
5) Solve 5(x − 7) − 13(x − 7) − 6 = 0.
x = 24, y = 15, so x + y = 39
6) For the system −2x + 4y = 12 and 3x − 5y = −3, what is x + y?
$8,000 is at 6¾ % and $2,000 at 5½ %, so $6,000 more is at 6¾ %.
7) $10,000 earns $650 simple interest; part at 5½ %, part at 6¾ %. How much MORE is at 6¾ %?
Δy = (20a)/(3b) (increase if a,b>0).
8) In 2ax + 3by = 7c, if x decreases 10 units, what is Δy?
k = 11⁄2 (5.5)
9) Line through (2k+3, 4k−6) & (−2, 16) has slope 0. Find k.
V(x)=x(10−2x)(6−2x)
10a) Give the volume function for an open box cut from 10"×6" card by removing squares x×x.
S(x)=(10−2x)(6−2x)+2x(10−2x)+2x(6−2x)
10b) Give the surface-area (no lid) for the same box.
x ∈ (−∞,−16] ∪ (10,∞)
11) Solve (5x+2)/(x−10) ≥ 3.
(−∞,−3)∪(−3,−1]∪[4,∞)
12) Domain of f(x)=√(x²−3x−4)/(6x²−54).
(−∞,−1)∪(−1,0)∪[0,∞)
13) Domain of f(x)= { (2x²+13)/(x²−1) for x<0 ; (5x−26)/(x+2) for x≥0 }.
x = 5⁄3 only (x=−½ is excluded).
14) x-intercepts of (6x² − 7x − 5)/(4x² − 12x − 7).
Vertical: x = 7⁄2; Horizontal: y = 3⁄2.
15) Vertical & horizontal asymptotes of same function.
x-intercepts at x=−3,0,3; y-intercept (0,0).
16) x- and y-intercepts of f(x)=x³−9x.
[−5,1]
17a) Domain of f(x)=√(−x²−4x+5).
t > ¾
17b) Domain of g(t)=ln(4t−3).
All real except x=−3,−1,1
17c) Domain of h(x)=1/(x³+3x²−x−3).
(√3·x·√x) ⁄ 2 = (√3 x^{3⁄2})⁄2
18) Simplify 2√(x⁵)·√3 ⁄ (4x).
y = ½(x−4)² + 10
19) Write the equation after shifting f(x)=x² right 4, vertical shrink ½, then up 10.
x = 3
20) Solve log(x+2)+log(x−1)=1.
x²(4x²+1)^7(76x²+3)
21) Completely factor 3x²(4x²+1)^8 + 64x⁴(4x²+1)^7.
d = 18/ tan 41° ≈ 20.7 ft
22) How far from an 18-ft pole gives a 41° angle of elevation?
f(g(x)) = 2/(x+2)
23) Find f∘g for f(x)=x/(x+1), g(x)=2/x.
8/(x+1) − (yw)/[(z+2)(y−4)]
24) Simplify 8/(x+1) − [ y/(z+2) ÷ (y−4)/w ].
x = ln 3
25) Solve e^{2x} − 2e^{x} − 3 = 0.
y=7x−34, so y(−4)=−62
26) Equation of line through (5,1) slope 7; then find y when x=−4.
1⁄[√(h+6)+√6]
27) Simplify [f(2+h)−f(2)]/h for f(x)=√(x+4).
y^{16}
28) Simplify (x²y⁴)⁵(x³y)^{−3} ⁄ (xy).
³√(a^n)=a^{n/3} (for a ≥ 0).
29) What property lets you pull an exponent of 1⁄3 outside a cube root?
[x³+4x²−6x−4] ⁄ [(x−2)(x+1)(x+3)]
30) Combine x²/(x²−x−2) − 4/(x²+x−6)+x/(x²+4x+3).
Zero: x=−1⁄3; Vertical asymptote: x=−3⁄4; Horizontal asymptote: y=3⁄4; Hole at x=5.
31) Zeros & asymptotes of f(x)=3x²−14x−5 / 4x²−17x−15.
cos θ=−4√3⁄7
32) If θ in Quadrant II and sin θ=1⁄7, find cos θ.
½ ln x + (5⁄2) ln y − 4 ln(z+1)
33) Expand ln[√(xy⁵)/(z+1)⁴].
−2 − √3⁄3 = (−6−√3)/3
34) Evaluate sec (2π⁄3) − tan (π⁄6).
Area rises from 20 in² to 21.6 in², a gain of 1.6 in² (8 %).
35) A 5 in ×4 in rectangle’s length increases 8 %. Change in area?
−6
36) Find f(2)−f(−3) for f(x)= {x³+1 if x>1; 2x²−3 if x≤1}.
1 − sin θ
37) Simplify cos²θ ⁄ (1+sin θ).
2 − ½ log₄ 3 ≈ 1.604
38) Evaluate log₄[(16)/√3].
(b³ + a)/(a − b)
39) Simplify (1/(a−b)) ÷ (1/(b³+a)).
t≈73.4 h (since t=24·log₂(25⁄3))
40) 1200 bacteria double daily. Hours to reach 10,000?