1/48
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Pythagorean Identity (sin and cos)
sin²x + cos²x = 1
Pythagorean Identity (sec and tan)
sec²x - tan²x = 1
Reciprocal Identity for secant
sec x = 1 / cos x
Reciprocal Identity for cosecant
csc x = 1 / sin x
Double Angle Formula for sine
sin 2x = 2 sin x cos x
Double Angle Formula for cosine
cos 2x = cos²x - sin²x
Sum & Difference Formula for sin(A ± B)
sin(A ± B) = sin A cos B ± cos A sin B
Sum & Difference Formula for cos(A ± B)
cos(A ± B) = cos A cos B ∓ sin A sin B
Definition of a Limit
lim(x→a) f(x) = L if and only if lim(x→a⁻) f(x) = L and lim(x→a⁺) f(x) = L
One-Sided Limit (approaching from the left)
lim(x→a⁻) f(x)
One-Sided Limit (approaching from the right)
lim(x→a⁺) f(x)
Limit Laws (Sum/Difference)
lim(x→a) [f(x) ± g(x)] = lim(x→a) f(x) ± lim(x→a) g(x)
Definition of a Vertical Asymptote
x = a is a vertical asymptote if lim(x→a⁻) f(x) = ±∞ or lim(x→a⁺) f(x) = ±∞
Definition of a Horizontal Asymptote
y = L is a horizontal asymptote if lim(x→±∞) f(x) = L
Squeeze Theorem
If f(x) ≤ g(x) ≤ h(x) and lim(x→a) f(x) = lim(x→a) h(x) = L, then lim(x→a) g(x) = L
Definition of the Derivative
f'(x) = lim(h→0) (f(x+h) - f(x)) / h
d/dx [xⁿ]
n xⁿ⁻¹
d/dx [e^x]
e^x
d/dx [ln x]
1 / x
d/dx [a^x]
ln(a) ⋅ a^x
d/dx [sin x]
cos x
d/dx [cos x]
-sin x
d/dx [tan x]
sec²x
d/dx [arcsin x]
1 / √(1 - x²)
d/dx [arctan x]
1 / (1 + x²)
d/dx [arcsec x]
1 / |x|√(x² - 1)
Product Rule
d/dx [f(x)g(x)] = f'(x) g(x) + f(x) g'(x)
Quotient Rule
d/dx [f(x) / g(x)] = (f'(x) g(x) - f(x) g'(x)) / g²(x)
Chain Rule
d/dx f(g(x)) = f'(g(x)) ⋅ g'(x)
L'Hôpital’s Rule
If lim(x→a) f(x)/g(x) is 0/0 or ∞/∞, then lim(x→a) f(x)/g(x) = lim(x→a) f'(x)/g'(x)
∫ xⁿ dx (for n ≠ -1)
(xⁿ⁺¹) / (n+1) + C
∫ e^x dx
e^x + C
∫ 1/x dx
ln|x| + C
∫ sin x dx
-cos x + C
∫ cos x dx
sin x + C
∫ sec²x dx
tan x + C
Fundamental Theorem of Calculus (Part 1)
∫[a,b] f(x)dx = F(b) - F(a), where F is an antiderivative of f
Fundamental Theorem of Calculus (Part 2)
d/dx ∫[c,x] f(t) dt = f(x)
Position, Velocity, Acceleration Relationships
s(t) = position, v(t) = s'(t) = velocity, a(t) = v'(t) = s''(t) = acceleration
Total Distance Traveled Formula
∫[a,b] |v(t)| dt
Volume of Solid (Disk Method)
V = π ∫[a,b] [R(x)]² dx
Volume of Solid (Washer Method)
V = π ∫[a,b] (R²(x) - r²(x)) dx
Volume of Solid (Cross-Sectional Area)
V = ∫[a,b] A(x) dx
LRAM (Left Riemann Sum)
Uses left endpoints of subintervals for f(x)
RRAM (Right Riemann Sum)
Uses right endpoints of subintervals for f(x)
MRAM (Midpoint Riemann Sum)
Uses midpoints of subintervals for f(x)
Trapezoidal Rule
A ≈ (Δx / 2) [f(x₀) + 2f(x₁) + 2f(x₂) + ... + f(xₙ)]
Mean Value Theorem
If f(x) is continuous on [a, b] and differentiable on (a, b), then there exists c in (a, b) such that f'(c) = (f(b) - f(a)) / (b - a)
Squeeze Theorem
If f(x) ≤ g(x) ≤ h(x) and lim(x→a) f(x) = lim(x→a) h(x) = L, then lim(x→a) g(x) = L