Q: Pythagorean Identity (sin and cos)
A: sin²x + cos²x = 1
Q: Pythagorean Identity (sec and tan)
A: sec²x - tan²x = 1
Q: Reciprocal Identity for secant
A: sec x = 1 / cos x
Q: Reciprocal Identity for cosecant
A: csc x = 1 / sin x
Q: Double Angle Formula for sine
A: sin 2x = 2 sin x cos x
Q: Double Angle Formula for cosine
A: cos 2x = cos²x - sin²x
Q: Sum & Difference Formula for sin(A ± B)
A: sin(A ± B) = sin A cos B ± cos A sin B
Q: Sum & Difference Formula for cos(A ± B)
A: cos(A ± B) = cos A cos B ∓ sin A sin B
Q: Definition of a Limit
A: lim(x→a) f(x) = L if and only if lim(x→a⁻) f(x) = L and lim(x→a⁺) f(x) = L
Q: One-Sided Limit (approaching from the left)
A: lim(x→a⁻) f(x)
Q: One-Sided Limit (approaching from the right)
A: lim(x→a⁺) f(x)
Q: Limit Laws (Sum/Difference)
A: lim(x→a) [f(x) ± g(x)] = lim(x→a) f(x) ± lim(x→a) g(x)
Q: Definition of a Vertical Asymptote
A: x = a is a vertical asymptote if lim(x→a⁻) f(x) = ±∞ or lim(x→a⁺) f(x) = ±∞
Q: Definition of a Horizontal Asymptote
A: y = L is a horizontal asymptote if lim(x→±∞) f(x) = L
Q: Squeeze Theorem
A: If f(x) ≤ g(x) ≤ h(x) and lim(x→a) f(x) = lim(x→a) h(x) = L, then lim(x→a) g(x) = L
Q: Definition of the Derivative
A: f'(x) = lim(h→0) (f(x+h) - f(x)) / h
Q: d/dx [xⁿ]
A: n xⁿ⁻¹
Q: d/dx [e^x]
A: e^x
Q: d/dx [ln x]
A: 1 / x
Q: d/dx [a^x]
A: ln(a) ⋅ a^x
Q: d/dx [sin x]
A: cos x
Q: d/dx [cos x]
A: -sin x
Q: d/dx [tan x]
A: sec²x
Q: d/dx [arcsin x]
A: 1 / √(1 - x²)
Q: d/dx [arctan x]
A: 1 / (1 + x²)
Q: d/dx [arcsec x]
A: 1 / |x|√(x² - 1)
Q: Product Rule
A: d/dx [f(x)g(x)] = f'(x) g(x) + f(x) g'(x)
Q: Quotient Rule
A: d/dx [f(x) / g(x)] = (f'(x) g(x) - f(x) g'(x)) / g²(x)
Q: Chain Rule
A: d/dx f(g(x)) = f'(g(x)) ⋅ g'(x)
Q: L'Hôpital’s Rule
A: If lim(x→a) f(x)/g(x) is 0/0 or ∞/∞, then lim(x→a) f(x)/g(x) = lim(x→a) f'(x)/g'(x)
Q: ∫ xⁿ dx (for n ≠ -1)
A: (xⁿ⁺¹) / (n+1) + C
Q: ∫ e^x dx
A: e^x + C
Q: ∫ 1/x dx
A: ln|x| + C
Q: ∫ sin x dx
A: -cos x + C
Q: ∫ cos x dx
A: sin x + C
Q: ∫ sec²x dx
A: tan x + C
Q: Fundamental Theorem of Calculus (Part 1)
A: ∫[a,b] f(x)dx = F(b) - F(a), where F is an antiderivative of f
Q: Fundamental Theorem of Calculus (Part 2)
A: d/dx ∫[c,x] f(t) dt = f(x)
Q: Position, Velocity, Acceleration Relationships
A:
s(t) = position
v(t) = s'(t) = velocity
a(t) = v'(t) = s''(t) = acceleration
Q: Total Distance Traveled Formula
A: ∫[a,b] |v(t)| dt
Q: Volume of Solid (Disk Method)
A: V = π ∫[a,b] [R(x)]² dx
Q: Volume of Solid (Washer Method)
A: V = π ∫[a,b] (R²(x) - r²(x)) dx
Q: Volume of Solid (Cross-Sectional Area)
A: V = ∫[a,b] A(x) dx
Q: LRAM (Left Riemann Sum)
A: Uses left endpoints of subintervals for f(x)
Q: RRAM (Right Riemann Sum)
A: Uses right endpoints of subintervals for f(x)
Q: MRAM (Midpoint Riemann Sum)
A: Uses midpoints of subintervals for f(x)
Q: Trapezoidal Rule
A: A ≈ (Δx / 2) [f(x₀) + 2f(x₁) + 2f(x₂) + ... + f(xₙ)]
Q: Mean Value Theorem
A: If f(x) is continuous on [a, b] and differentiable on (a, b), then there exists c in (a, b) such that f'(c) = (f(b) - f(a)) / (b - a)
Q: Squeeze Theorem
A: If f(x) ≤ g(x) ≤ h(x) and lim(x→a) f(x) = lim(x→a) h(x) = L, then lim(x→a) g(x) = L