Area
∫ f(x) - g(x) dx
Volume
π ∫ (f(x))2 dx where f(x) is radius
Washer method volume (x axis)
π ∫ (f(x))2- (g(x))2 dx
Shell method volume (y axis)
2π ∫ x(f(x) - g(x)) dx where x is the radius and f(x) and g(x) are the height functions.
Coefficient of semicircle
π/8
Coefficient of isosceles right triangle where triangle is sitting up like how we usually picture a right triangle
1/2
Coefficient for isosceles right triangle where it looks like its the roof of a house and right angle is on the top angle and the equal sides are the two sides of the roof (not hypotenuse)
1/4
coefficient of square
1
Coefficient of rectangle
K but there are two ways for rectangle K ∫ (f(x) - g(x)) dx OR ∫ h(x) (f(x) - g(x))dx
Arc length
∫ √(1 + (f(x))2) dx
Surface Area
2π ∫ r(x) √(1 + (f(x))2) dx
Area of Elipse
4a/b ∫ √(a2 - x2) dx (bounds from 0 to a)
Partial fractions
separates denominator into fractions
Integration by parts
∫ uv’ = uv - ∫vu’
Trig sub: √(a2-x2)
x = a sin(θ)
Trig sub: √(a2+ x2)
x = a tan(θ)
Trig sub: √(x2 - a2)
x = a sec(θ)
Tabular
∫ (polynomial)(exponential or sin or cos)
Indefinite forms of L’Hopital’s Rule
(0/0), (∞/∞), (0*∞), (∞ - ∞), (00), (∞^0), (1∞)
Improper integrals
Can be something with bounds to negative or positive infinity which will end up with a horizontal asymptote at y=0 OR can be something with a discontinuity in function in the integral bounds which will mean it will have a vertical asymptote
Separable differential equations
Separate (x and y), integrate, celebrate
Logistics P equation
P = (L/(1+Be-kt))
Logistics P’ equations
P’ = KP(L-P) OR P’ = K(1-(P/L))
Euler’s method
In calc put →A then →B then B + Δx(A+B) →B and then finally A + Δx →A
Parametric slope (derivative)
(dy/dx) = (dy/dt)/(dx/dt)
Parametric second derivative
[(d/dt)(dy/dx)]/(dx/dt)
Parametric Arc Length
∫ √( (x’)2+(y’)2) dt (bounds are t1 to t2)
Parametric Surface Area
2π ∫ r √( (x’)2+(y’)2) dt
Parametric integral
∫ y(t) (dx/dt)dt
Parametric volume
π ∫ (y(t))2(dx/dt)dt
Cartesian to Polar
θ = arctan(y/x)
Polar to Cartesian
x = r cos(θ) and y = r sin(θ)
Polar Slope in plane (derivative)
(dy/dx) = (dy/dt)/(dx/dt)
Polar Arc Length
∫ √((r’)2+r2) dθ
Polar Area
½ ∫ r2 dθ
Polar Area between 2 curves/shapes
½ ∫ (f(θ))2 - (g(θ))2 dθ