Hyperbolic trig functions

0.0(0)
studied byStudied by 1 person
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/26

flashcard set

Earn XP

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

27 Terms

1
New cards

sinh(x)

ex- e-x/2


2
New cards

cosh(x)

ex +e-x/2

3
New cards

cosh2(x) - sinh2(x)=

1

4
New cards

1- tanh2(x)

sech2(x)

5
New cards

d/dx[ sinh(x) ]=

cosh(x)

6
New cards

d/dx[cosh(x)]=

sinh(x)

7
New cards

d/dx[tanh(x)]=

sech2(x)

8
New cards

d/dx[csch(x)]=

-csch(x)coth(x)

9
New cards

d/dx[sech(x)]=

-sech(x)tanh(x)

10
New cards

d/dx[coth(x)]

-csch2(x)

11
New cards

d/dx[arcsinh(x)]=

1/(x2 + 1)1/2

12
New cards

d/dx[arccosh(x)]=

1/(x2 - 1)1/2

13
New cards

d/dx[arctanh(x)]=

1/(1 - x2)

14
New cards

d/dx[arccsch(x)]=

-1/(|x|(x2 + 1)1/2)

15
New cards

d/dx[arcsech(x)]=

-1/(x(1 - x2)1/2)

16
New cards

d/dx[arccoth(x)]=

1/(1 - x2)

17
New cards

int[sinh(x)]=

cosh(x) + C

18
New cards

int[cosh(x)]=

sinh(x) + C

19
New cards

int[sech2(x)]=

tanh(x) + C

20
New cards

int[csch2(x)]=

-coth(x) + C

21
New cards

int[sech(x)tanh(x)]=

-sech(x) + C

22
New cards

int[csch(x)coth(x)]=

-csch(x) + C

23
New cards

arccosh(x)=

ln[x + (x2 - 1)1/2]

24
New cards

arcsinh(x)=

ln[x + (x2 + 1)1/2]

25
New cards

arctanh(x)=

(1/2)ln|(1+x)/(1-x)|

26
New cards

sinh(2x)

2sinh(x)cosh(x)

27
New cards

cosh(2x)

cosh2(x) + sinh2(x)