binomial expansion

0.0(0)
studied byStudied by 1 person
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/47

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

48 Terms

1
New cards
<p>for non-natural numbers MOVE THIS DOWN</p>

for non-natural numbers MOVE THIS DOWN

knowt flashcard image
2
New cards

what does ! mean?

factorial

<p>factorial</p>
3
New cards

binomially expand (1 + x)^5

knowt flashcard image
4
New cards

pascal’s triangle

knowt flashcard image
5
New cards

which row do you start counting from on pascal’s triangle?

the second down, 1 1

6
New cards

what is significant about the binomial expansion of any term with a singular negative term?

knowt flashcard image
7
New cards
<p>how do you solve this?</p>

how do you solve this?

knowt flashcard image
8
New cards

which terms have increasing powers and which have decreasing?

1st term - decreasing

2nd term - increasing

9
New cards

how do you find the nCr button on the calculator?

  1. optn

  2. F6 (>)

  3. F3 (prob)

  4. F3 (nCr)

10
New cards

how do you use the nCr button?

knowt flashcard image
11
New cards

what does n factorial represent?

number of ways of arranging n objects in a line

12
New cards

what does ^ncr mean?

‘n choose r’ - the number of ways of choosing r items from a group of n items

13
New cards

how else is ncr written?

<p></p><p></p>
14
New cards

n = ?

row; i.e., power of x (x³ = 3rd row)

15
New cards

r = ?

position in row, starting with 0 for 1 because the first term is always 1 so it’s not typically calculated

<p>position in row, starting with 0 for 1 because the first term is always 1 so it’s not typically calculated </p>
16
New cards

what is a binomial expression?

an expression that has 2 terms. e.g., in (x + 6), the 1st term is x and the 2nd is 6

17
New cards

what is the binomial expansion?

<p></p>
18
New cards

how many terms are there in a row?

+1 of the row number; e.g., x^5 has 6 terms as you need to account for x^0

19
New cards

what is the binomial expansion for individual coefficients?

knowt flashcard image
20
New cards

should x be the a or b term?

b, always

21
New cards
<p>how do you solve this?</p>

how do you solve this?

knowt flashcard image
22
New cards
<p>how do you solve this?</p>

how do you solve this?

knowt flashcard image
23
New cards
<p>how do you solve this?</p>

how do you solve this?

knowt flashcard image
24
New cards

what is binomial estimation?

finding simple approximations for complicated functions

25
New cards

in binomial estimation, what happens when x < 1?

x^n gets smaller as n gets larger

26
New cards

in binomial expansion, what can you sometimes do when x is small? GET THIS EXPLAINED

ignore larger powers of x to approximate a function or estimate a value

27
New cards

if you’ve listed the first few terms of a sequence, how must you end the sequence?

+…

28
New cards
<p>how do you solve this?</p>

how do you solve this?

knowt flashcard image
29
New cards

binomial expansion for n values that are not natural (i.e., negative or fractional values of n)

knowt flashcard image
30
New cards

what does it mean for the expansion when n is a non-natural number?

binomial expansions are infinitely long, whereas when n is natural there is a definite number of terms

31
New cards

which values for n binomially expand into an infinite series and which have a definite number of terms?

natural numbers (positive, whole) - definite

non-natural numbers (negative, fractions) - infinite (as long as -1 < x < 1)

32
New cards

how should you answer questions on the binomial expansion for non-natural values of n?

  1. since they produce an infinite series, the questions will ask ‘up until’

  2. you answer up until x to the power of 1 less than the term they’ve asked for, because 1 counts as the first term (e.g., first four terms = 1, x, x², x³)

  3. finish your sequences with ‘+…’

33
New cards
<p>how do you solve this?</p>

how do you solve this?

knowt flashcard image
34
New cards

why are non-natural binomial expansions infinite?

because none of the factors in the expression equal zero

35
New cards

when are approximations based on the binomial expansion more accurate?

  1. when more terms of the expansion are used

  2. when the values of x substituted are closer to 0

36
New cards
<p>when is the expansion for this term valid?</p>

when is the expansion for this term valid?

knowt flashcard image
37
New cards

how do you expand (a + bx)^n ?

by using the binomial expansion of (1 + x)^n and taking a factor of a^n out of the expression

<p>by using the binomial expansion of (1 + x)^n and taking a factor of a^n out of the expression</p>
38
New cards

when is the expansion for (a + bx)^n , where n is a non-natural number, valid?

knowt flashcard image
39
New cards
<p>how do you solve this? ASK TEACHER ANOUT CONVERGENCE</p>

how do you solve this? ASK TEACHER ANOUT CONVERGENCE

knowt flashcard image
40
New cards

convergent and divergent series

convergent series - terms become smaller with increasing power (e.g., 8, 4, 2, 1, 1/2, 1/4, 1/8)

divergent series - terms become larger with increasing power (2, 4, 6, 8, 10, 12, 14)

41
New cards

which kind of series is binomial expansion only applicable for?

convergent series

42
New cards

what are the requirements for x in binomial expansion where n is non-natural? LOOK INTO THIS does this mean if it’s a fraction over 1 or negative below -1

?.?

<p>?.?</p>
43
New cards
<p>how do you solve this?</p>

how do you solve this?

get back to this …

<p>get back to this …</p>
44
New cards

practice non natural pls

45
New cards
<p>how do you solve this?</p>

how do you solve this?

using partial fractions

<p>using partial fractions </p>
46
New cards

what’s important to remember about the b term?

the whole term is put to the power of, not just the x

<p>the whole term is put to the power of, not just the x </p>
47
New cards

when do you include ‘+…’ at the end?

for infinite series, unless you have provided all the terms the question asked for

48
New cards

how do use a given value of x to find an approximation of a value?

  1. write the bracket term with x = the given value

  2. if x is applicable to find an approximation, the value should be decipherable from your answer

  3. write that ‘the value can be estimated by substituting x = [ur x value] into the expansion, and [rearranging for the value alone; e.g., adding / multiplying]