1/59
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No analytics yet
Send a link to your students to track their progress
d/dx [k]
0
d/dx [f(x) ± g(x)]
f′(x) ± g′(x)
d/dx [k·f(x)]
k·f′(x)
d/dx [f(x)·g(x)]
g(x)·f′(x) + g’(x)·f(x)
d/dx [f(x)/g(x)]
[g(x)·f′(x) − f(x)·g′(x)] / [g(x)]² (domain: g(x) ≠ 0)
d/dx [f(g(x))]
f′(g(x)) · g′(x) (chain rule; domain: g(x) in domain of f)
d/dx [xⁿ]
n · xⁿ⁻¹
d/dx [uⁿ] (chain form)
n · uⁿ⁻¹ · u′ (domain: depends on ‘n’; for non-integer ‘n’ ensure ‘u’ stays in domain)
d/dx [sin(u)]
cos(u) · u′ (domain: all real u)
d/dx [cos(u)]
−sin(u) · u′ (domain: all real u)
d/dx [tan(u)]
sec²(u) · u′ (domain: u ≠ π/2 + kπ)
d/dx [cot(u)]
−csc²(u) · u′ (domain: u ≠ kπ)
d/dx [sec(u)]
sec(u)·tan(u) · u′ (domain: u ≠ π/2 + kπ)
d/dx [csc(u)]
−csc(u)·cot(u) · u′ (domain: u ≠ kπ)
d/dx [e^{u}]
e^{u} · u′ (domain: all real u)
d/dx [a^{u}]
a^{u}·ln(a) · u′ (domain: a>0)
d/dx [ln|u|]
u′ / u (domain: u ≠ 0)
d/dx [sin⁻¹(u)]
u′ / √(1 − u²) (domain: |u| < 1)
d/dx [cos⁻¹(u)]
− u′ / √(1 − u²) (domain: |u| < 1)
d/dx [tan⁻¹(u)]
u′ / (1 + u²) (domain: all real u)
d/dx [cot⁻¹(u)]
− u′ / (1 + u²) (domain: all real u)
d/dx [sec⁻¹(u)]
u′ / (|u|·√(u² − 1)) (domain: |u| > 1)
d/dx [csc⁻¹(u)]
− u′ / (|u|·√(u² − 1)) (domain: |u| > 1)
d/dx [log_a(u)]
u’/u·ln(a) (domain: a > 0, a ≠ 1, u>0)
f’(c) (Use for specific ‘c’ value)
\lim_{x \to c} \frac{f(x) - f(c)}{x - c}
How do you check if a function is differentiable at x=c using the limit definition of the derivative?
Compute the left-hand derivative:
f'_-(c) = \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c}
Compute the right-hand derivative:
f'_+(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c}
Compare:
If f'_-(c) = f'_+(c), f is differentiable at c.
If they are not equal, f is not differentiable at c .
If f is differentiable at x = c, then…
f is continuous at x = c
However, the opposite is not always true.
Limit Definition of a Derivative
\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}
Where is a function not differentiable?
A function is not differentiable at points where it is not continuous, has a corner or cusp, a vertical tangent, or where the left-hand and right-hand derivatives are not equal.
Left-Sum
Σ(i=1 to n) f(a + (i-1)Δx) · Δx where Δx = (b-a)/n
Right-Sum
Σ(i=1 to n) f(a + iΔx) · Δx where Δx = (b-a)/n
Midpoint-Sum
Σ(i=1 to n) f(a + (i - 1/2)Δx) · Δx where Δx = (b-a)/n
Trapezoidal-Sum
Σ(i=1 to n) [(f(x_{i-1}) + f(x_i))/2] · Δx where Δx = (b-a)/n
∫(a to b) f(x)dx
F(b) - F(a)
Mean Value Theorem for Integrals
If f is continuous on [a,b], then there exists a number c in [a,b] such that… ∫(a to b) f(x)dx = f(c) · (b-a)
[Where f(c) is known as the average value of the function]
d/dx[∫(a to x) f(t)dt]
d/dx[∫(a to x) f(t)dt] = f(x)
d/dx[∫(a to u(x)) f(t)dt]
d/dx[∫(a to u(x)) f(t)dt] = f(u(x)) · u'(x)
Average Value
f(c) = (1/(b-a)) · ∫(a to b) f(x)dx
∫[1/((x-a)(x-b))]dx
∫[1/((x-a)(x-b)(x-c))]dx
∫[1/((x-a)(x-b))]dx = ∫[A/(x-a) + B/(x-b)]dx
∫[1/((x-a)(x-b)(x-c))]dx = ∫[A/(x-a) + B/(x-b) + C/(x-c)]dx
∫(1/x)dx
∫(1/u)du
∫(u'/u)dx
∫(1/x)dx = ln|x| + C
∫(1/u)du = ln|u| + C
∫(u'/u)dx = ln|u| + C
∫sin(u)du
-cos(u) + C
∫cos(u)du
sin(u) + C
∫tan(u)du
-ln|cos(u)| + C or ln|sec(u)| + C
∫cot(u)du
ln|sin(u)| + C
∫sec(u)du
ln|sec(u) + tan(u)| + C
∫csc(u)du
-ln|csc(u) + cot(u)| + C or ln|csc(u) - cot(u)| + C
∫(1/√(a² - u²))du
arcsin(u/a) + C
∫(1/√(a² - u²))du
-arccos(u/a) + C
∫(1/(a² + u²))du
(1/a)arctan(u/a) + C
∫(1/(a² + u²))du
-(1/a)arccot(u/a) + C
∫(1/(u√(u² - a²)))du
(1/a)arcsec(|u|/a) + C
∫(1/(u√(u² - a²)))du
-(1/a)arccsc(|u|/a) + C
Integration by Parts
∫udv=uv−∫vdu
Pythagorean Identities
sin²(x) + cos²(x) = 1
sec²(x) = 1 + tan²(x)
1 + cot²(x) = csc²(x)
Power Reducing Formulas
sin²(x) = (1 - cos(2x))/2
cos²(x) = (1 + cos(2x))/2
Strategy with Integrals Involving Sine and Cosine.
\int_{}^{}\!\sin^{m}\left(x\right)\cos^{n}\left(x\right)\,dx
Strategy:
Break up the Trig function that has the odd power and use the Pythagorean Identity sin²(x) + cos²(x) = 1.
If there are no odd powers of sine and cosine, convert sin²(x) or cos²(x) using the Power Reducing Formulas sin²(x) = (1 - cos(2x))/2 or cos²(x) = (1 + cos(2x))/2.
Strategy with Integrals Involving Secant and Tangent.
\int_{}^{}\!\,\sec^{m}\left(x\right)\tan^{n}\left(x\right)dx
Strategy:
If the power of secant is even, save a sec²(x) and convert the rest to tangents.
If the power of tangent is odd, save a secant-tangent factor and convert the rest to secants.
If there is just tangent to an even power, convert tan²(x) to sec²(x) - 1 and expand.
If there is just secant to an odd power, use integration by parts.
If none of the above apply, convert to sines and cosines.
Integrals with Infinite Limits of Integration
If f(x) is continuous on [a,\infty), then\int_{a}^{\infty}\!f\left(x\right)\,dx = limit (b →\infty) \int_{a}^b\!f\left(x\right)\,dx
If f(x) is continuous on [-\infty, b], then\int_{-\infty}^{b\!}f\left(x\right)\,dx = limit (a → -\infty)\int_{a}^b\!f\left(x\right)\,dx
If f(x) is continuous on (-\infty ,\infty), then\int_{-\infty}^{\infty}f\left(x\right)\,dx = \int_{-\infty}^{c}\!f\left(x\right)\,dx + \int_{c}^{\infty}\!f\left(x\right)\,dx where c is any real number.
Integrals with Infinite Discontinuities
If f(x) is continuous on (a, b], then\int_{a}^{b}\!f\left(x\right)\,dx = limit (c → a+) \int_{c}^{b}\!f\left(x\right)\,dx
If f(x) is continuous on [a, b), then\int_{a}^{b\!}f\left(x\right)\,dx = limit (c → b-)\int_{a}^{c}\!f\left(x\right)\,dx
If f(x) is continuous on [a, b] but there is a vertical asymptote at c, then\int_{a}^{b}f\left(x\right)\,dx = \int_{a}^{c}\!f\left(x\right)\,dx + \int_{c}^{b}\!f\left(x\right)\,dx
Area Between Curves
If f and g are continuous on [a,b] and g(x) \le f(x) for all x in [a,b], then the area of the region bounded by the graphs of f and g on the interval [a,b] is given by…
A =\int_{a}^{b}\left(f\left(x\right)-g\left(x\right)\right)\!\,dx