Results for "amphetamines"

Filters

Flashcards

ASSESSMENT OF THE LIVER Anatomic and Physiologic Overview The liver, the largest gland of the body and a major organ, can be considered a chemical factory that manufactures, stores, alters, and excretes a large number of substances involved in metabolism (Hammer & McPhee, 2019; Sanyal, Boyer, Terrault, et al., 2018). The location of the liver is essential because it receives nutrient-rich blood directly from the gastrointestinal (GI) tract and then either stores or transforms these nutrients into chemicals that are used elsewhere in the body for metabolic needs. The liver is especially important in the regulation of glucose and protein metabolism. The liver manufactures and secretes bile, which has a major role in the digestion and absorption of fats in the GI tract. The liver removes waste products from the bloodstream and secretes them into the bile. The bile produced by the liver is stored temporarily in the gallbladder until it is needed for digestion, at which time the gallbladder empties and bile enters the intestine (see Fig. 43-1). Anatomy of the Liver The liver is a large, highly vascular organ located behind the ribs in the upper right portion of the abdominal cavity. It weighs between 1200 and 1500 g in the average adult and is divided into four lobes. A thin layer of connective tissue surrounds each lobe, extending into the lobe itself and dividing the liver mass into small, functional units called lobules (Barrett, Barman, Brooks, et al., 2019; Hammer & McPhee, 2019). The circulation of the blood into and out of the liver is of major importance to liver function. The blood that perfuses the liver comes from two sources. Approximately 80% of the blood supply comes from the portal vein, which drains the GI tract and is rich in nutrients but lacks oxygen. The remainder of the blood supply enters by way of the hepatic artery and is rich in oxygen. Terminal branches of these two blood vessels join to form common capillary beds, which constitute the sinusoids of the liver (see Fig. 43-2). Thus, a mixture of venous and arterial blood bathes the hepatocytes (liver cells). The sinusoids empty into venules that occupy the center of each liver lobule and are called the central veins. The central veins join to form the hepatic vein, which constitutes the venous drainage from the liver and empties into the inferior vena cava, close to the diaphragm (Barrett et al., 2019; Hammer & McPhee, 2019; Sanyal et al., 2018). In addition to hepatocytes, phagocytic cells belonging to the reticuloendothelial system are present in the liver. Other organs that contain reticuloendothelial cells are the spleen, bone marrow, lymph nodes, and lungs. In the liver, these cells are called Kupffer cells (Barrett et al., 2019; Hammer & McPhee, 2019). As the most common phagocyte in the human body, their main function is to engulf particulate matter (e.g., bacteria) that enters the liver through the portal blood. The smallest bile ducts, called canaliculi, are located between the lobules of the liver. The canaliculi receive secretions from the hepatocytes and carry them to larger bile ducts, which eventually form the hepatic duct. The hepatic duct from the liver and the cystic duct from the gallbladder join to form the common bile duct, which empties into the small intestine. The sphincter of Oddi, located at the junction where the common bile duct enters the duodenum, controls the flow of bile into the intestine. Figure 43-1 • The liver and biliary system, including the gallbladder and bile ducts. Reprinted with permission from Norris, T. L. (2019). Porth’s pathophysiology: Concepts of altered health states (10th ed., Fig. 38.1). Philadelphia, PA: Wolters Kluwer. Figure 43-2 • A section of liver lobule showing the location of hepatic veins, hepatic cells, liver sinusoids, and branches of the portal vein and hepatic artery. Functions of the Liver Glucose Metabolism The liver plays a major role in the metabolism of glucose and the regulation of blood glucose concentration. After a meal, glucose is taken up from the portal venous blood by the liver and converted into glycogen, which is stored in the hepatocytes. Subsequently, the glycogen is converted back to glucose through a process called glycogenolysis and is released as needed into the bloodstream to maintain normal levels of blood glucose. However, this process provides a limited amount of glucose. Additional glucose can be synthesized by the liver through a process called gluconeogenesis. For this process, the liver uses amino acids from protein breakdown or lactate produced by exercising muscles. This process occurs in response to hypoglycemia (Barrett et al., 2019; Hammer & McPhee, 2019). Ammonia Conversion The use of amino acids from protein for gluconeogenesis results in the formation of ammonia as a by-product. The liver converts this metabolically generated ammonia into urea. Ammonia produced by bacteria in the intestines is also removed from portal blood for urea synthesis. In this way, the liver converts ammonia, a potential toxin, into urea, a compound that is excreted in the urine (Barrett et al., 2019; Hammer & McPhee, 2019). Protein Metabolism The liver also plays an important role in protein metabolism. It synthesizes almost all of the plasma proteins (except gamma-globulin), including albumin, alpha-globulins and beta-globulins, blood clotting factors, specific transport proteins, and most of the plasma lipoproteins. Vitamin K is required by the liver for synthesis of prothrombin and some of the other clotting factors. Amino acids are used by the liver for protein synthesis (Barrett et al., 2019; Hammer & McPhee, 2019). Fat Metabolism The liver is also active in fat metabolism. Fatty acids can be broken down for the production of energy and ketone bodies (acetoacetic acid, beta-hydroxybutyric acid, and acetone). Ketone bodies are small compounds that can enter the bloodstream and provide a source of energy for muscles and other tissues. Breakdown of fatty acids into ketone bodies occurs primarily when the availability of glucose for metabolism is limited, as in starvation or in uncontrolled diabetes. Fatty acids and their metabolic products are also used for the synthesis of cholesterol, lecithin, lipoproteins, and other complex lipids (Hammer & McPhee, 2019; Sanyal et al., 2018). Vitamin and Iron Storage Vitamins A, B, and D and several of the B-complex vitamins are stored in large amounts in the liver. Certain substances, such as iron and copper, are also stored in the liver. Bile Formation Bile is continuously formed by the hepatocytes and collected in the canaliculi and bile ducts. It is composed mainly of water and electrolytes such as sodium, potassium, calcium, chloride, and bicarbonate, and it also contains significant amounts of lecithin, fatty acids, cholesterol, bilirubin, and bile salts. Bile is collected and stored in the gallbladder and is emptied into the intestine as needed for digestion. The functions of bile are excretory, as in the excretion of bilirubin; bile also serves as an aid to digestion through the emulsification of fats by bile salts. Bile salts are synthesized by the hepatocytes from cholesterol. After conjugation or binding with amino acids (taurine and glycine), bile salts are excreted into the bile. The bile salts, together with cholesterol and lecithin, are required for emulsification of fats in the intestine, which is necessary for efficient digestion and absorption. Bile salts are then reabsorbed, primarily in the distal ileum, into portal blood for return to the liver and are again excreted into the bile. This pathway from hepatocytes to bile to intestine and back to the hepatocytes is called the enterohepatic circulation. Because of the enterohepatic circulation, only a small fraction of the bile salts that enter the intestine are excreted in the feces. This decreases the need for active synthesis of bile salts by the liver cells (Hammer & McPhee, 2019). Bilirubin Excretion Bilirubin is a pigment derived from the breakdown of hemoglobin by cells of the reticuloendothelial system, including the Kupffer cells of the liver. Hepatocytes remove bilirubin from the blood and chemically modify it through conjugation to glucuronic acid, which makes the bilirubin more soluble in aqueous solutions. The conjugated bilirubin is secreted by the hepatocytes into the adjacent bile canaliculi and is eventually carried in the bile into the duodenum. p. 1366 p. 1367 In the small intestine, bilirubin is converted into urobilinogen, which is partially excreted in the feces and partially absorbed through the intestinal mucosa into the portal blood. Much of this reabsorbed urobilinogen is removed by the hepatocytes and secreted into the bile once again (enterohepatic circulation). Some of the urobilinogen enters the systemic circulation and is excreted by the kidneys in the urine. Elimination of bilirubin in the bile represents the major route of its excretion. Drug Metabolism The liver metabolizes many medications, such as barbiturates, opioids, sedatives, anesthetics, and amphetamines (Goldman & Schafer, 2019; Hammer & McPhee, 2019; Sanyal et al., 2018). Metabolism generally results in drug inactivation, although activation may also occur. One of the important pathways for medication metabolism involves conjugation (binding) of the medication with a variety of compounds, such as glucuronic acid or acetic acid, to form more soluble substances. These substances may be excreted in the feces or urine, similar to bilirubin excretion. Bioavailability is the fraction of the given medication that actually reaches the systemic circulation. The bioavailability of an oral medication (absorbed from the GI tract) can be decreased if the medication is metabolized to a great extent by the liver before it reaches the systemic circulation; this is known as first-pass effect. Some medications have such a large first-pass effect that their use is essentially limited to the parenteral route, or oral doses must be substantially larger than parenteral doses to achieve the same effect. Gerontologic Considerations Chart 43-1 summarizes age-related changes in the liver. In the older adult, the most common change in the liver is a decrease in size and weight, accompanied by a decrease in total hepatic blood flow. However, in general, these decreases are proportional to the decreases in body size and weight seen in normal aging. Results of liver function tests do not normally change with age; abnormal results in older patients indicate abnormal liver function and are not a result of the aging process itself. Chart 43-1 Age-Related Changes of the Hepatobiliary System •Atypical clinical presentation of biliary disease •Decreases in the following: •Clearance of hepatitis B surface antigen •Drug metabolism and clearance capabilities •Intestinal and portal vein blood flow •Gallbladder contraction after a meal •Rate of replacement and or repair of liver cells after injury •Size and weight of the liver, particularly in women •Increased prevalence of gallstones due to the increase in cholesterol secretion in bile •More rapid progression of hepatitis C infection and lower response rate to therapy •More severe complications of biliary tract disease Adapted from Townsend, C. M., Beauchamp, R. D., Evers, B. M., et al. (2016). Sabiston’s textbook of surgery: The biological basis of modern surgical practice. Philadelphia, PA: Elsevier. Metabolism of medications by the liver decreases in the older adult, but such changes are usually accompanied by changes in intestinal absorption, renal excretion, and altered body distribution of some medications secondary to changes in fat deposition. These alterations necessitate careful medication administration and monitoring; if appropriate, reduced dosages may be needed to prevent medication toxicity
Updated 46d ago
flashcards Flashcards (15)
AMPHETAMINES
Updated 161d ago
flashcards Flashcards (18)
CNS Stimulants ADHD Medications Amphetamine (Adderall, Dexedrine) Mechanism of Action: Stimulates excitatory neurons, increases dopamine & norepinephrine. Indications: ADHD, narcolepsy. Adverse Effects: Increased HR/BP, anxiety, tremor, insomnia, headache, decreased appetite, GI distress, dry mouth. Contraindications: Cardiac abnormalities, hypertension, anxiety, agitation, glaucoma, MAOI use (within 14 days). Nursing Implications: Administer 4-6 hours before bedtime. Take on an empty stomach. Monitor BP, pulse, weight, growth patterns in children. Avoid abrupt withdrawal. Methylphenidate (Ritalin, Concerta) Mechanism of Action: CNS stimulant affecting dopamine reuptake. Indications: ADHD, narcolepsy. Adverse Effects: Same as amphetamines. Nursing Implications: Same as amphetamines. Lisdexamfetamine (Vyvanse) Mechanism of Action: Converted into dextroamphetamine. Indications: ADHD, binge-eating disorder. Nursing Implications: Similar to amphetamines. Atomoxetine (Strattera) Mechanism of Action: Selective norepinephrine reuptake inhibitor. Indications: ADHD (children >6 and adults). Adverse Effects: Lower abuse potential, less insomnia, but Black Box Warning for suicidal thoughts. Nursing Implications: Monitor mental health for suicidal ideation. Narcolepsy Medications Modafinil (Provigil) Mechanism of Action: Low abuse potential stimulant. Indications: Narcolepsy, shift work sleep disorder. Nursing Implications: Monitor BP & mental health. Antimigraine Medications Rizatriptan (Maxalt), Sumatriptan (Imitrex) Mechanism of Action: Serotonin receptor agonist, causing vasoconstriction. Indications: Acute migraine treatment. Adverse Effects: Tingling, flushing, chest tightness, rebound headaches if overused. Contraindications: Cardiovascular disease, hypertension, glaucoma. Nursing Implications: Administer at first sign of migraine. Avoid triggers. Monitor cardiac history. Endocrine Medications Pituitary Medications Somatropin (Humotrope) Mechanism of Action: Growth hormone replacement. Indications: Growth failure (hypopituitarism, HIV wasting). Adverse Effects: Hyperglycemia, hypothyroidism, injection site reactions. Nursing Implications: Monitor growth, motor skills, thyroid, and glucose levels. Rotate injection sites. Octreotide (Sandostatin) Mechanism of Action: GH antagonist. Indications: Acromegaly, GH-producing tumors. Adverse Effects: GI distress, glucose changes, cardiac conduction issues. Nursing Implications: Monitor glucose, EKG, growth. ADH Medications Vasopressin (Pitressin) & Desmopressin (DDAVP) Mechanism of Action: Mimics ADH. Indications: Vasopressin: Hypotension, hemorrhage. Desmopressin: Diabetes insipidus, bedwetting. Adverse Effects: Increased BP, headache, GI distress. Nursing Implications: Monitor VS, urine output, cardiac status. Thyroid Medications Levothyroxine (Synthroid) Mechanism of Action: Synthetic T4. Indications: Hypothyroidism. Adverse Effects: Hyperthyroid symptoms. Nursing Implications: Administer before breakfast on an empty stomach. Monitor thyroid labs (TSH, T3, T4). Avoid iodine-rich foods, iron/calcium supplements. Propylthiouracil (PTU) Mechanism of Action: Inhibits thyroid hormone production. Indications: Hyperthyroidism, thyroid storm. Adverse Effects: GI distress, bone marrow suppression. Nursing Implications: Monitor thyroid levels & CBC. Avoid iodine-rich foods. Radioactive Iodine (I-131) Mechanism of Action: Destroys thyroid tissue. Indications: Hyperthyroidism, thyroid cancer. Adverse Effects: Radiation sickness, Pregnancy Category X. Nursing Implications: Radiation precautions: Avoid close contact, use separate utensils, increase fluids. Adrenal Medications Glucocorticoids Hydrocortisone (Solu-Cortef), Prednisone (Deltasone), Dexamethasone (Decadron), Methylprednisolone (Solu-Medrol) Mechanism of Action: Anti-inflammatory, immunosuppressant. Indications: Adrenal insufficiency, inflammatory/autoimmune diseases. Adverse Effects: Metabolic: Hyperglycemia, weight gain, Cushing’s syndrome. Musculoskeletal: Osteoporosis, muscle wasting. CV: Hypertension, edema. Neuro: Mood swings, insomnia. Nursing Implications: Administer in the morning with food. Taper off slowly to prevent adrenal crisis. Monitor glucose levels with long-term use. Avoid sick contacts due to immune suppression. Mineralocorticoids Fludrocortisone (Florinef) Mechanism of Action: Mimics aldosterone (Na & water retention). Indications: Addison’s disease, adrenal insufficiency. Adverse Effects: Hypertension, hypokalemia, edema. Nursing Implications: Monitor BP, electrolytes (Na, K). Immunosuppressants Cyclosporine (Sandimmune), Tacrolimus (Prograf) Mechanism of Action: Suppresses immune response. Indications: Organ transplant, autoimmune diseases. Adverse Effects: Increased risk for infections, nephrotoxicity, diabetes. Nursing Implications: Strict dosing schedule (same time every day). Avoid grapefruit juice & styrofoam cups. No live vaccines (MMR, Varicella, Smallpox). Report any signs of infection immediately. Lifespan Considerations Pediatrics: Monitor growth in children using ADHD meds & growth hormones. Pregnancy: Avoid radioactive iodine (I-131) & immunosuppressants. Elderly: Caution with stimulants & corticosteroids (risk of cardiac issues, osteoporosis). Patient Teaching CNS Stimulants: Avoid abrupt withdrawal. Monitor growth (children). Thyroid Meds: Take levothyroxine on an empty stomach. Avoid iodine-rich foods if on PTU. Corticosteroids: Taper off gradually. Monitor glucose, avoid infections. Immunosuppressants: No live vaccines. Strict dosing schedule. Insulins Rapid-acting Insulins (Insulin lispro - Humalog, Insulin aspart - Novolog) Mechanism of Action: Fast-acting insulin that mimics natural insulin secretion in response to meals. Indications: Type 1 or Type 2 Diabetes. Adverse Effects: Hypoglycemia, weight gain, lipodystrophy at injection sites. Nursing Implications: Must eat a meal after injection. Administer subcutaneously (SQ) or via infusion pump. Clear, colorless solution. Short-acting Insulin (Regular insulin - Humulin R) Mechanism of Action: Provides short-term glucose control. Indications: Type 1 & Type 2 Diabetes. Adverse Effects: Hypoglycemia, weight gain. Nursing Implications: Onset: 30-60 min, Peak: 2.5 hr, Duration: 6-10 hr. Can be administered IV, IM, or SQ. Clear, colorless solution. Intermediate-acting Insulin (NPH - Isophane insulin suspension) Mechanism of Action: Delayed onset but prolonged glucose control. Indications: Often combined with regular insulin for Type 1 & Type 2 Diabetes. Adverse Effects: Hypoglycemia, weight gain. Nursing Implications: Onset: 1-2 hr, Peak: 4-8 hr, Duration: 10-18 hr. Cloudy suspension, administered SQ. Usually given twice daily before meals. Long-acting Insulins (Insulin glargine - Lantus, Insulin detemir - Levemir) Mechanism of Action: Provides basal insulin coverage with no peak effect. Indications: Type 1 & Type 2 Diabetes. Adverse Effects: Hypoglycemia (less risk), weight gain. Nursing Implications: Onset: 1-2 hr, No peak, Duration: 24 hr. DO NOT mix with other insulins. Clear, colorless solution. Oral Antidiabetics Biguanides (Metformin - Glucophage) Mechanism of Action: Decreases hepatic glucose production & increases insulin sensitivity. Indications: First-line treatment for Type 2 Diabetes. Adverse Effects: GI discomfort, diarrhea, metallic taste, reduced B12 levels. Black Box Warning: Risk of lactic acidosis (especially in renal failure). Nursing Implications: Administer 30 min before meals. Hold if contrast dye is used (renal failure risk). Sulfonylureas (Glipizide - Glucotrol) Mechanism of Action: Stimulates pancreatic insulin release. Indications: Type 2 Diabetes (early stages). Adverse Effects: Hypoglycemia, weight gain, nausea. Contraindications: Sulfa allergy. Nursing Implications: Give 30 min before meals. Monitor for hypoglycemia. Glinides (Repaglinide - Prandin) Mechanism of Action: Increases insulin secretion from beta cells. Indications: Type 2 Diabetes (postprandial glucose control). Adverse Effects: Hypoglycemia, weight gain. Black Box Warning: May exacerbate heart failure. Nursing Implications: Take with each meal, skip if meal is skipped. Glitazones (Pioglitazone - Actos) Mechanism of Action: Improves insulin sensitivity. Indications: Type 2 Diabetes (often combined with metformin or sulfonylureas). Adverse Effects: Fluid retention, weight gain, fractures. Black Box Warning: May exacerbate heart failure. Nursing Implications: Weigh daily. Monitor for heart failure signs. Alpha-glucosidase Inhibitors (Acarbose - Precose) Mechanism of Action: Delays carbohydrate absorption. Indications: Type 2 Diabetes (postprandial glucose control). Adverse Effects: GI issues (flatulence, diarrhea). Contraindications: GI disorders (IBD, malabsorption). Nursing Implications: Take with first bite of meal. DPP-4 Inhibitors (Gliptins) (Sitagliptin - Januvia) Mechanism of Action: Enhances incretin hormone function. Indications: Adjunct to diet/exercise in Type 2 Diabetes. Adverse Effects: URI, headache, diarrhea. Nursing Implications: Take once daily, with or without food. SGLT-2 Inhibitors (Canagliflozin - Invokana) Mechanism of Action: Inhibits glucose reabsorption in kidneys. Indications: Type 2 Diabetes (weight loss benefit). Adverse Effects: UTIs, yeast infections, dehydration, ketoacidosis. Nursing Implications: Take once daily before breakfast. Injectable Non-Insulin Medications Amylin Agonists (Pramlintide - Symlin) Mechanism of Action: Slows gastric emptying, suppresses glucagon. Indications: Type 1 & Type 2 Diabetes. Adverse Effects: Nausea, vomiting, anorexia. Contraindications: Gastroparesis. Nursing Implications: Inject before meals. Take at least 1 hr before oral meds. Incretin Mimetics (Exenatide - Byetta) Mechanism of Action: Enhances insulin secretion. Indications: Type 2 Diabetes (used when oral meds fail). Adverse Effects: GI symptoms, weight loss, thyroid tumors (Black Box Warning). Nursing Implications: Administer SQ 1 hr before meals. Glucose-Elevating Agents Glucagon Indications: Severe hypoglycemia. Adverse Effects: Vomiting (turn patient on side). Nursing Implications: Used when patient cannot take oral glucose. Dextrose 50% in Water (D50W) Indications: Emergency treatment of hypoglycemia. Nursing Implications: Administer IV. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) Salicylates (Aspirin - ASA) Mechanism of Action: COX-1 & COX-2 inhibitor, antiplatelet. Indications: Pain, fever, inflammation, CV prevention. Adverse Effects: GI bleeding, Reye’s syndrome in children. Nursing Implications: Do not give to children with viral infections. Acetic Acid Derivative (Ketorolac - Toradol) Indications: Short-term pain management (up to 5 days). Adverse Effects: Renal impairment, GI distress. COX-2 Inhibitor (Celecoxib - Celebrex) Indications: Osteoarthritis, rheumatoid arthritis. Adverse Effects: CV risk (Black Box Warning). Contraindications: Sulfa allergy. Propionic Acid Derivatives (Ibuprofen, Naproxen) Indications: Pain, inflammation, fever. Adverse Effects: GI distress, bleeding risk. Antigout Medications Allopurinol (Zyloprim) Mechanism of Action: Reduces uric acid production. Indications: Chronic gout prevention. Adverse Effects: Stevens-Johnson syndrome. Nursing Implications: Take with food. Colchicine (Colcrys) Mechanism of Action: Reduces inflammatory response. Indications: Acute gout attack. Adverse Effects: GI distress, bleeding risk. Nursing Implications: Hydration (3L/day). Immunizations Active Immunizing Drugs Mechanism of Action: Stimulate the immune system to produce antibodies against specific pathogens, offering long-term immunity. Indications: Prevention of infectious diseases. Adverse Effects: Common: Soreness, fever, mild rash. Severe: Fever >103°F, encephalitis, convulsions, anaphylaxis. Contraindications: Immunocompromised patients, pregnancy (some vaccines), active infections. Nursing Implications: Assess medical history, immune status, and pregnancy. Administer vaccines at appropriate sites: Infants: Mid-lateral thigh. Older children/adults: Deltoid muscle. Use warm compresses, Tylenol for mild reactions. Report severe reactions to VAERS (Vaccine Adverse Event Reporting System). Examples of Active Immunizations: Diphtheria, tetanus toxoids, acellular pertussis (DTaP, Td): Prevents diphtheria, tetanus, and pertussis. Haemophilus influenzae type B (Hib): Prevents bacterial infections, especially in children. Hepatitis B vaccine: Prevents Hep B infection. Influenza vaccine: Annual vaccine for flu prevention. Measles, mumps, rubella (MMR): Prevents viral infections. Pneumococcal vaccine: Protects against pneumococcal infections (pneumonia, meningitis). Poliovirus vaccine (IPV): Prevents poliomyelitis. Rabies vaccine: Given for rabies exposure or pre-exposure prophylaxis. Human papillomavirus (HPV - Gardasil): Prevents HPV-related cancers. Herpes zoster (Zostavax, Shingrix): Protects against shingles. Varicella vaccine: Prevents chickenpox. Passive Immunizing Drugs Mechanism of Action: Provides preformed antibodies for immediate protection; temporary immunity. Indications: Post-exposure prophylaxis in high-risk patients. Examples: Hepatitis B immunoglobulin: Post-exposure protection for Hepatitis B. Immunoglobulin: General immune support. Rabies immunoglobulin: Post-exposure prophylaxis after animal bites. Tetanus immunoglobulin: Used in unvaccinated individuals exposed to tetanus. Dermatologic Medications Antibacterials Bacitracin Mechanism of Action: Inhibits bacterial cell wall synthesis. Indications: Minor skin infections. Adverse Effects: Burning, itching. Neomycin & Polymyxin B (Neosporin) Mechanism of Action: Broad-spectrum antibacterial. Indications: Minor wounds. Adverse Effects: Local irritation. Mupirocin (Bactroban) Indications: Topical: Treats impetigo (Staphylococcus, Streptococcus infections). Intranasal: Used for MRSA colonization. Adverse Effects: Burning, itching. Silver Sulfadiazine (Silvadene) Mechanism of Action: Acts on bacterial cell wall. Indications: Burn treatment (prevention of infection). Adverse Effects: Pain, burning, contraindicated in sulfa allergy. Antiacne Medications Benzoyl Peroxide Mechanism of Action: Releases oxygen, killing acne bacteria. Indications: Mild to moderate acne. Adverse Effects: Red, peeling skin, warmth. Tretinoin (Retin-A) Mechanism of Action: Vitamin A derivative, stimulates cell turnover. Indications: Acne, UV damage. Adverse Effects: Skin peeling, severe sunburn risk (use sunscreen). Isotretinoin (Accutane) Mechanism of Action: Sebaceous gland suppression. Indications: Severe cystic acne. Adverse Effects: Teratogenic (Pregnancy Category X), liver toxicity, mood changes. Black Box Warning: IPLEDGE Program (2 contraceptive methods required). Antifungals Clotrimazole (Lotrimin) Mechanism of Action: Inhibits fungal growth. Indications: Athlete’s foot, ringworm, yeast infections. Adverse Effects: Local irritation. Miconazole (Monistat) Mechanism of Action: Antifungal, some Gram-positive action. Indications: Yeast infections, jock itch, athlete’s foot. Adverse Effects: Burning, itching, pelvic cramps. Antivirals Acyclovir (Zovirax) Mechanism of Action: Inhibits viral DNA replication. Indications: Herpes simplex (HSV-1 & HSV-2), shingles. Adverse Effects: Stinging, rash. Miscellaneous Dermatologics Permethrin (Elimite) Mechanism of Action: Neurotoxic to lice/scabies. Indications: Head lice, scabies. Adverse Effects: Itching, burning. Ophthalmic Medications Cholinergic Drugs (Miotics) Acetylcholine (Miochol-E) Indications: Induces miosis (pupil constriction) during surgery. Adverse Effects: Eye discomfort, blurred vision. Pilocarpine (Pilocar) Mechanism of Action: Stimulates cholinergic receptors, reduces intraocular pressure. Indications: Glaucoma, ocular surgery. Adverse Effects: Blurred vision, tearing, reduced night vision. Beta-Adrenergic Blockers Timolol (Timoptic) Mechanism of Action: Reduces aqueous humor production & increases outflow. Indications: Glaucoma, ocular hypertension. Adverse Effects: Eye irritation, systemic effects possible (bradycardia, hypotension). Otic Medications Ofloxacin (Floxin Otic) Mechanism of Action: Fluoroquinolone antibiotic (bacterial DNA disruption). Indications: Otitis externa & media. Adverse Effects: Mild itching/pain. Carbamide Peroxide (Debrox) Mechanism of Action: Softens & breaks down earwax. Indications: Earwax removal. Adverse Effects: Ear irritation. Nursing Considerations Lifespan Considerations Pediatrics: Infants: Thigh for vaccines, avoid aspirin (Reye’s syndrome risk). Monitor growth with long-term corticosteroids. Pregnancy: Avoid live vaccines (MMR, varicella, HPV, Zoster). Avoid isotretinoin (teratogenic). Elderly: Caution with ophthalmic beta-blockers (can cause systemic effects). Monitor renal function with fluoroquinolones (ototoxicity risk). Patient Teaching Vaccines: Keep records, report reactions. Use Tylenol, not aspirin for fever. Dermatologics: Apply with gloves, wash hands before & after. Sunscreen required with tretinoin & isotretinoin. Ophthalmic/Otic: Apply pressure to inner canthus after eye drops (reduce systemic absorption). Hold ear up & back (adults), down & back (children) for otic drops
Updated 165d ago
flashcards Flashcards (5)
0.00
studied byStudied by 0 people