Results for "Right Atrium"

Filters

Flashcards

System Interactions in Animals Tools Finish System Interactions in Animals The human body is made of many different organ systems. Each system performs unique functions for the body, but the systems also interact with each other to perform more complex functions. Major Organ Systems Body Systems In humans, cells, tissues, and organs group together to form organ systems. These systems each perform different functions for the human body. The major organ systems and their functions in humans include: The Nervous System — The nervous systems consists of two parts. The central nervous system consists of the brain and spinal cord, while the peripheral nervous system consists of nerves that connect the central nervous system to other parts of the body. The brain plays an important role in interpreting the information picked up by the sensory system. It helps in producing a precise response to the stimuli. It also controls bodily functions such as movements, thoughts, speech, and memory. The brain also controls many processes related to homeostasis in the body. The spinal cord connects to the brain through the brainstem. From the brainstem, the spinal cord extends to all the major nerves in the body. The spinal cord is the origin of spinal nerves that branch out to various body parts. These nerves help in receiving and transmitting signals from various body parts. The spinal cord helps in reflex actions of the body The smallest unit of the nervous system is the nerve cell, or neuron. Neurons communicate with each other and with other cells by producing and releasing electrochemical signals known as nerve impulses. Neurons consist of the cell body, the dendrites, and the axon. The cell body consists of a nucleus and cytoplasm. Dendrites are specialized branch-like structures that help in conducting impulses to and from the various body parts. Axons are long, slender extensions of the neuron. Each neuron possesses just a single axon. Its function is to carry the impulses away from the cell body to other neurons. The Circulatory System — The circulatory (or cardiovascular) system is composed of the heart, arteries, veins, and capillaries. The circulatory system is responsible for transporting blood to and from the lungs so that gas exchange can take place. As the circulatory system pumps blood throughout the body, dissolved nutrients and wastes are also delivered to their destinations. The heart is a muscular organ roughly the size of an adult human's closed fist. It is present behind the breastbone, slightly to the left. It consists of four chambers: right atrium, left atrium, right ventricle, and left ventricle. The heart receives deoxygenated blood from the body and pumps this blood to the lugs, where it is oxygenated. The oxygen-rich blood reenters the heart and is then pumped back through the body. The circulatory system is responsible for transporting blood to and from the lungs so that gas exchange can take place. As the circulatory system pumps blood throughout the body, dissolved nutrients and wastes are also delivered to their destinations. Blood circulation takes place through blood vessels. Blood vessels are tubular structures that form a network within the body and transport blood to each tissue. There are three major types of blood vessels: veins, arteries, and capillaries. Veins carry deoxygenated blood from the body to the heart, except for pulmonary veins, which carry oxygenated blood from the lungs to the heart. Arteries carry oxygenated blood from the heart to different organs, except for the pulmonary artery, which carries deoxygenated blood from the heart to the lungs. The arteries branch out to form capillaries. These capillaries are thin-walled vessels through which nutrients and wastes are exchanged with cells. The Respiratory System — The main structures of the respiratory system are the trachea (windpipe), the lungs, and the diaphragm. When the diaphragm contracts, it creates a vacuum in the lungs that causes them to fill with air. During this inhalation, oxygen diffuses into the circulatory system while carbon dioxide diffuses out into the air that will be exhaled. The trachea branches out into two primary bronchi. Each bronchus is further divided into numerous secondary bronchi. These secondary bronchi further branch into tertiary bronchi. Finally, each tertiary bronchus branches into numerous bronchioles. Each bronchiole terminates into a tiny, sac-like structure known as an alveolus. The walls of each alveolus are thin and contain numerous blood capillaries. The process of gaseous exchange occurs in these alveoli. The diaphragm is a dome-shaped muscle situated at the lower end of the rib cage. It separates the abdominal cavity from the chest cavity. During inhalation, the diaphragm contracts, and the chest cavity enlarges, creating a vacuum that allows air to be drawn in. This causes the alveoli in the lungs to expand with air. During this process, oxygen diffuses into the circulatory system while carbon dioxide diffuses out into the air that will be exhaled. On the other hand, expansion of the diaphragm causes exhalation of air containing carbon dioxide. The Digestive System — The digestive system consists of the mouth, stomach, small intestine, large intestine, and anus. It is responsible for taking in food, digesting it to extract energy and nutrients that cells can use to function, and expelling the remaining waste material. Mechanical and chemical digestion takes place in the mouth and stomach, while absorption of nutrients and water takes place in the intestines. The digestive system begins at the mouth, where food is taken in, and ends at the anus, where waste is expelled. The food taken into the mouth breaks into pieces by the grinding action of the teeth. Carbohydrate digestion starts in the mouth with the breakdown of carbohydrates into simple sugars with the help of salivary enzymes. The chewed food, known as a bolus, enters the stomach through the esophagus. The bolus mixes with acids and enzymes released by the stomach. Protein digestion starts in the stomach as proteins are broken down into peptides. This partially digested food is known as chyme. Chyme enters the small intestine and mixes with bile, a substance secreted by the liver, along with enzymes secreted by the pancreas. The digestion of fats starts in the small intestine as bile and pancreatic enzymes break down fats into fatty acids. The surface of the small intestine consists of hair-like projections known as villi. These villi help in absorbing nutrients from the digested food. The digested food enters the large intestine, or colon, where water and salts are reabsorbed. Any undigested food is expelled out of the body as waste. The Skeletal System — The skeletal system is made up of over 200 bones. It protects the body's internal organs, provides support for the body and gives it shape, and works with the muscular system to move the body. In addition, bones can store calcium and produce red and white blood cells. The Muscular System — The muscular system includes more than 650 tough, elastic pieces of tissue. The primary function of any muscle tissue is movement. This includes the movement of blood through the arteries, the movement of food through the digestive tract, and the movement of arms and legs through space. Skeletal muscles relax and contract to move the bones of the skeletal system. The Excretory System — The excretory system removes excess water, dangerous substances, and wastes from the body. The excretory system also plays an important role in maintaining body equilibrium, or homeostasis. The human excretory system includes the lungs, sweat glands in the skin, and the urinary system (such as the kidneys and the bladder). The body uses oxygen for metabolic processes. Oxygen metabolism results in the production of carbon dioxide, which is a waste matter. The lungs expel carbon dioxide through the mouth and nose. The liver converts toxic metabolic wastes, such as ammonia, into less harmful susbtances. Ammonia is converted to urea, which is then excreted in the urine. The skin also expels urea and small amounts of ammonia through sweat. The skin is embedded with sweat glands. These glands secrete sweat, a solution of water, salt, and wastes. The sweat rises to the skin's surface, where it evaporates. The skin maintains homeostasis by producing sweat in hot environments. Sweat production cools and prevents excessive heating of the body. Each kidney contains about a million tiny structures called nephrons, which filter the blood and collect waste products, such as urea, salts, and excess water that go on to become urine. The Endocrine System — The endocrine system is involved with the control of body processes such as fluid balance, growth, and sexual development. The endocrine system controls these processes through hormones, which are produced by endocrine glands. Some endocrine glands include the pituitary gland, thyroid gland, parathyroid gland, adrenal glands, thymus gland, ovaries in females, and testes in males. The Immune System — The immune system is a network of cells, tissues, and organs that defends the body against foreign invaders. The immune system uses antibodies and specialized cells, such as T-cells, to defend the body from microorganisms that cause disease. The Reproductive System — The reproductive system includes structures, such as the uterus and fallopian tubes in females and the penis and testes in males, that allow humans to produce new offspring. The reproductive system also controls certain hormones in the human body that regulate the development of sexual characteristics and determine when the body is able to reproduce. The Integumentary System — The integumentary system is made up of a person's skin, hair, and nails. The skin acts as a barrier to the outside world by keeping moisture in the body and foreign substances out of the body. Nerves in the skin act as an interface with the outside world, helping to regulate important aspects of homeostasis, such as body temperature. Interacting Organ Systems The organ systems work together to perform complex bodily functions. The functions of regulation, nutrient absorption, defense, and reproduction are only possible because of the interaction of multiple body systems. Regulation All living organisms must maintain homeostasis, a stable internal environment. Organisms maintain homeostasis by monitoring internal conditions and making adjustments to the body systems as necessary. For example, as body temperature increases, skin receptors and receptors in a region of the brain called the hypothalamus sense the change. The change triggers the nervous system to send signals to the integumentary and circulatory systems. These signals cause the skin to sweat and blood vessels close to the surface of the skin to dilate, actions which dispel heat to decrease body temperature. Both the nervous system and the endocrine system are typically involved in the maintenance of homeostasis. The nervous system receives and processes stimuli, and then it sends signals to body structures to coordinate a response. The endocrine system helps regulate the response through the release of hormones, which travel through the circulatory system to their site of action. For example, the endocrine system regulates the level of sugar in the blood by the release of the hormones insulin, which stimulates uptake of glucose by cells, and glucagon, which stimulates the release of glucose by the liver. The nervous and endocrine systems interact with the excretory system in the process of osmoregulation, the homeostatic regulation of water and fluid balance in the body. The excretory system expels excess water, salts, and waste products. The excretion of excessive amounts of water can be harmful to the body because it reduces blood pressure. If the nervous system detects a decrease in blood pressure, it stimulates the endocrine system to release antidiuretic hormone. This hormone decreases the amount of water released by the kidneys to ensure appropriate blood pressure. Appropriate levels of carbon dioxide in the blood are also maintained by homeostatic mechanisms that involve several organ systems. Excess carbon dioxide, a byproduct of cellular respiration, can be harmful to an organism. As blood circulates throughout the body, it picks up carbon dioxide waste from cells and transports it to the lungs, where it is exhaled while fresh oxygen is inhaled. If the concentration of carbon dioxide in the blood increases above a certain threshold, the nervous system directs the lungs to increase their respiration rate to remove the excess carbon dioxide, which ensures that the levels of carbon dioxide in the blood are maintained at appropriate levels. In this way, the circulatory, respiratory, and nervous systems work together to limit the level of carbon dioxide in the blood. Nutrient Absorption To absorb nutrients from food, the nervous, digestive, muscular, excretory, and circulatory systems all interact. The nervous system controls the intake of food and regulates the muscular action of chewing, which mechanically breaks down food. As food travels through the stomach and intestines, the digestive system structures release enzymes to stimulate its chemical breakdown. At the same time, the muscular action, called peristalsis, of the muscles in the wall of the stomach help churn the food and push it through the digestive tract. In the intestines, nutrients from food travel across the surfaces of the villi. The nutrients are then picked up by the blood, and the circulatory system transports the nutrients throughout the cells of the body. The endocrine system releases hormones, such as insulin, that control the rate at which certain body cells use nutrients. Any excess minerals, such as calcium, in the blood are deposited in and stored by the skeletal system. Waste products produced by the use of nutrients, as well as the leftover solid waste from the digestion of food, exit the body through the excretory system. Throughout the process of nutrient absorption, the nervous system controls the muscles involved in digestion, circulation, and excretion. Defense Several body systems interact to defend the body from external threats. The body's first line of defense is the integumentary system, which provide a physical barrier that prevents pathogens from entering the body. The skin of the integumentary system also contains receptors for pain, temperature, and pressure. If an unpleasant stimulus is encountered, these receptors send signals to the central nervous system. In response, the central nervous system sends commands to the muscles to move the body part away from the stimulus. In this way, the integumentary, nervous, and muscular systems interact to prevent damage to the body. In the event of a break in the skin, the nervous, immune, lymphatic, and circulatory systems work together to repair the wound and protect the body from pathogens. When the skin is broken, specialized blood cells called platelets form a clot to stop the bleeding. These platelets also release chemicals that travel through the circulatory system and recruit cells, like immune system cells, to repair the wound. These immune cells, or white blood cells, are transported by the circulatory and lymphatic systems to the site of the wound, where they identify and destroy potentially pathogenic cells to prevent an infection. Some lymphocytes, white blood cells produced by the lymphatic system, also produce antibodies to neutralize specific pathogens. All of the white blood cells involved in the body's response were originally produced in the bone marrow of the skeletal system. If an infection does occur
Updated 65d ago
flashcards Flashcards (10)
Question: Bile is a substance secreted to help digest fats. Bile is stored in the: Answer: Gallbladder Question: Which element in the protein hemoglobin, found in red blood cells, is responsible for binding oxygen? Answer: Iron Question: When a blood vessel is injured, which of the following is responsible for clotting? Answer: Platelets Question: If CaCl2 is mixed with Na2SO4 in aqueous solution, which of the following is a possible product? Answer: NaCl Question: The Earth is about 4.5 billion years old. About how many years ago did life first appear? Answer: 3.5 billion years Question: The sun’s energy reaches the Earth’s surface primarily in the form of: Answer: Visible light radiation Question: Which type of rock would likely be found at the bottom of a river bed? Answer: Sedimentary Question: Which of the following statements about the Earth is true? Answer: The mantle makes up the largest percentage of the Earth’s volume Question: If an unbalanced force acts on an object, then the object will begin to accelerate according to: Answer: Newton’s Second Law Question: In meiosis, one parent cell becomes how many daughter cells? Answer: 4 Question: The potential energy of an object with a mass of 5kg that is placed 20 meters above the surface of the earth is most nearly: Answer: 981 Joules Question: One of the reasons bacteria can be so deadly is because they multiply very quickly. E. coli has a doubling time of around 15 minutes. This means that if 100 bacteria are left alone for 2 hours, they will multiply to become: Answer: 25,600 Bacteria Question: Organisms which help one another survive by providing a mutual benefit to each other are known as: Answer: Symbionts Question: In taxonomy, which classification comes after ‘family’? Answer: Genus Question: All of the following are phenotypic traits except for: Answer: Missing 22nd chromosome Question: The cell membrane is a structure composed primarily of: Answer: Lipid Question: Of the following layers of the atmosphere, which is the closest to the earth’s surface and contains the majority of clouds? Answer: Troposphere Question: Which of the following body systems is most closely associated with the immune system? Answer: Lymphatic System Question: One of the primary characteristics of a bacteria is its: Answer: Lack of a nuclear membrane Question: Which of the following planets has a perfectly circular orbit? Answer: None Question: Sound waves will travel the fastest in a medium that is: Answer: The most dense Question: A calorie is actually a measure of energy, and is equivalent to how many Joules? Answer: 4.18 Question: What is the molecular weight of the compound C2H5O? Answer: 45 Question: Craig ran 2.5 miles on his afternoon run. How many feet did he run? Answer: 13,200 feet Question: The earth’s surface is covered by approximately what percent water? Answer: 70% Question: Blood that flows back from the body will enter the heart through the: Answer: Right Atrium Question: A nerve impulse is transmitted through your nervous system primarily by: Answer: An electric potential Question: All magnets have two poles which can be used to predict the direction of their magnetic waves. These two poles are the: Answer: South and North Question: Approximately how many bones exist in the human body? Answer: 200 Question: The nucleus of an atom is composed of: Answer: Protons and neutrons Question: What is the second most abundant gas in the atmosphere? Answer: Oxygen Question: As light passes through a substance, the incident angle changes, meaning the light’s entering angle is different than its exiting angle. This is an example of: Answer: Refraction Question: If one tectonic plate slides under another, the process is known as: Answer: Subduction Question: Carbon dioxide can be consumed and converted into glucose by what type of organism? Answer: Plants Question: Two separate weather fronts will have air that is of different: Answer: Density Question: Plants are autotrophs, meaning that they: Answer: Are able to produce their own food Question: Plant and animal cells both have cell membranes and nuclear membranes. However, plant cells have a structure that animal cells do not, known as a: Answer: Cell Wall Question: Muscles in the human body require what energy compound to function? Answer: ATP Question: When a human cell divides in mitosis, the two daughter cells will each have: Answer: 46 Chromosomes Question: In an electromagnetic wave, as the frequency of the wave becomes greater, what becomes shorter? Answer: The wavelength Question: Which of the following time periods is the longest? Answer: Eon Question: In the lily flower, the red color is dominant and the white color is recessive. This means that if you cross a homozygous red flower with a white one, the offspring will be: Answer: All red Question: Which of the following is a characteristic of the tundra ecological biome? Answer: Landscape dominated by shrubs and short trees Question: A train travels at 25 mph for 3 hours. How far did the train move? Answer: 75 miles Question: A solution contains 0.1 molar hydrogen ions (H+). This means the solution is likely: Answer: Around pH 1
Updated 78d ago
flashcards Flashcards (5)
Cardiovascular System - Detailed Summary 1. Functions of the Cardiovascular System • The cardiovascular system is a closed system consisting of the heart and blood vessels. • Main functions: • Transport oxygen, nutrients, hormones, and waste. • Maintain blood pressure and circulation. • Aid in immune function (through WBCs in blood). 2. Anatomy of the Heart • Location: Thoracic cavity, between the lungs, within the mediastinum. • Size: About the size of a fist. • Orientation: • Apex: Points toward the left hip (bottom). • Base: Directed toward the right shoulder (top, where large blood vessels attach). Heart Layers (Inside to Outside) 1. Endocardium – Inner lining of the heart, smooth to prevent clotting. 2. Myocardium – Thick muscular layer responsible for contraction. 3. Epicardium (Visceral Pericardium) – Outer covering of the heart. • Pericardium: A double-walled sac surrounding the heart. • Parietal Pericardium: Outer layer. • Visceral Pericardium: Inner layer (epicardium). • Pericardial Fluid: Lubricates and reduces friction during heartbeats. 3. Chambers of the Heart The heart has four chambers: • Atria (Right & Left): Upper receiving chambers. • Ventricles (Right & Left): Lower pumping chambers. • Right Side of the Heart: Pumps deoxygenated blood to the lungs (Pulmonary Circulation). • Left Side of the Heart: Pumps oxygenated blood to the body (Systemic Circulation). 4. Heart Valves Valves prevent backflow of blood: 1. Atrioventricular (AV) Valves – Between atria and ventricles: • Right AV Valve: Tricuspid Valve • Left AV Valve: Bicuspid (Mitral) Valve 2. Semilunar Valves – Between ventricles and arteries: • Pulmonary Semilunar Valve: Right ventricle → Pulmonary artery • Aortic Semilunar Valve: Left ventricle → Aorta • Chordae Tendineae (“Heart Strings”) anchor AV valves to prevent them from inverting. 5. Blood Flow Through the Heart 1. Deoxygenated Blood Pathway (Blue): • Superior/Inferior Vena Cava → Right Atrium → Tricuspid Valve → Right Ventricle → Pulmonary Semilunar Valve → Pulmonary Artery → Lungs 2. Oxygenated Blood Pathway (Red): • Lungs → Pulmonary Veins → Left Atrium → Bicuspid Valve → Left Ventricle → Aortic Semilunar Valve → Aorta → Body 6. Electrical Conduction System (Intrinsic Conduction System) The heart has automaticity (can contract on its own). • Sinoatrial (SA) Node (“Pacemaker”) – Sets the heart’s rhythm (~75 bpm). • Atrioventricular (AV) Node – Delays impulse so atria can contract first. • AV Bundle (Bundle of His) – Carries signal to ventricles. • Purkinje Fibers – Cause ventricles to contract. Disruptions in this system can cause arrhythmias (irregular heartbeats). 7. Cardiac Cycle (Heartbeat) Each cycle consists of: 1. Atrial Systole – Atria contract, pushing blood into ventricles. 2. Ventricular Systole – Ventricles contract, pumping blood to the lungs/body. 3. Diastole – Heart relaxes and fills with blood. • Heart Sounds: • “Lub” – Closing of AV valves during ventricular contraction. • “Dub” – Closing of semilunar valves during ventricular relaxation. 8. Cardiac Output (CO) • Definition: The amount of blood pumped by each ventricle per minute. • Formula: • CO = Heart Rate (HR) × Stroke Volume (SV) • Average CO = 5.25 L/min Factors affecting CO: • Sympathetic nervous system → Increases HR (exercise, stress) • Parasympathetic nervous system → Decreases HR (rest, sleep) • Hormones (epinephrine, thyroxine) → Increase HR 9. Blood Vessels & Circulation • Arteries: Carry oxygenated blood away from the heart (except pulmonary artery). • Veins: Carry deoxygenated blood to the heart (except pulmonary vein). • Capillaries: Tiny vessels for gas/nutrient exchange. Blood Vessel Structure 1. Tunica Intima – Inner layer, smooth to reduce friction. 2. Tunica Media – Middle layer, made of smooth muscle (controls blood pressure). 3. Tunica Externa – Outer layer for support. 10. Major Circulatory Routes • Pulmonary Circulation: Right ventricle → Lungs → Left atrium. • Systemic Circulation: Left ventricle → Body → Right atrium. Special Circulations: • Hepatic Portal Circulation: Blood from digestive organs goes through the liver before reaching the heart. • Fetal Circulation: Blood bypasses the lungs using special shunts (foramen ovale, ductus arteriosus). 11. Blood Pressure & Disorders • Blood Pressure (BP): The force of blood against vessel walls. • Normal BP: ~ 120/80 mmHg • Hypertension (High BP): >140/90 mmHg – Can damage arteries. • Hypotension (Low BP): <90/60 mmHg – Can cause dizziness or shock. Factors affecting BP: • Cardiac Output (CO) • Blood Volume • Vessel Resistance (narrower arteries = higher BP) 12. Common Cardiovascular Disorders • Hypertension (High Blood Pressure): Can lead to stroke, heart attack. • Atherosclerosis: Hardening of arteries due to plaque buildup. • Myocardial Infarction (Heart Attack): Blockage in coronary artery cuts off oxygen. • Arrhythmia: Irregular heartbeats due to conduction system issues no
Updated 103d ago
flashcards Flashcards (5)
CT4-LECTURE 1- JAN 2025 OBJECTIVES Developmental Anatomy (Embryology): • Outline the stages of human growth and development, focusing on dental anatomy and root morphology. • Correlate developmental processes with hard and soft tissue formation in the oral cavity. Microscopic Anatomy: • Classify cells (cytology) and tissues (histology) based on their structure and specialization. • Evaluate the role of microscopic structures in maintaining oral health. GROSS Anatomy • Identify anatomical landmarks of the oral head and neck, including the TMJ, circulatory system, glands, and nervous system. • Describe the structures visible to the naked eye and their clinical relevance. Physiology: • Explain the functions of body systems and their integration in oral health. • Analyze the physiological processes affecting the oral cavity. 1/16/2025 3 Mitosis Meiosis One cell division Two cell division Produces two daughter cells Produces Four daughter cells Produces diploid cells Produces haploid cells Daughter cells are genetically identical Daughter cells are non- identical Produces body cells Produces sex cells • Mitosis and meiosis are both types of cell division. • Mitosis is how new body cells are produced, whereas meiosis is used to produce gametes (i.e. sperm and egg cells). first week Spermatozoa + Oocyte = Zygote (12-24hrs.) Cell division via mitosis = Cleavage 1st solid ball called Morulla Inside Morulla secretion of fluids becomes blastocyte (5days) Blastocyte has 2 regeions Trophoblast(peripheral cells) & Embryoblast layer(inner mass) CLINICAL CONSIDERATIONS FOR PREIMPLANTATION PERIOD •If any disturbances occur in meiosis during fertilization, major congenital malformations result from the chromosomal abnormality in around 10% of cases. •A syndrome is a group of specific signs and symptoms. PREIMPLANTATION PERIOD • After a week of cleavage, the blastocyst consists of a layer of peripheral cells, the trophoblast layer, and a small inner mass of embryonic cells or embryoblast layer. • The trophoblast layer later gives rise to important prenatal support tissue while the embryoblast layer later gives rise to the embryo. SECOND WEEK • A bilaminar embryonic disc • The superior epiblast layer is composed of high columnar cells. • The inferior hypoblast layer is composed of small cuboidal cells. THIRD WEEK • Primitive streak (rod shaped thickening) forms a bilateral symmetry within the bilaminar embryonic disc. • Some cells from the epiblast layer move or migrate toward the hypoblast layer only in the area of the primitive streak and become • Mesoderm, an embryonic connective tissue, and embryonic endoderm. END OF THIRD WEEK • With three layers present, the bilaminar disc has thickened into a trilaminar embryonic disc. • The epiblast layer is now considered ectoderm. • 3 germ layers • Ectoderm-becomes skin, nervous system, and neural crest cells. • Mesoderm-Becomes muscles, bones, blood, and connective tissues. • Endoderm-Forms internal organs like the digestive and respiratory systems. 1/16/2025 10 Neural Crest Cells & Mesenchymal Transition(dental tissue) • Neural crest cells are derived from the ectoderm during neurulation (around weeks 3-4). • NCC migrate and undergo epithelial-to-mesenchymal transition (EMT), becoming highly migratory mesenchymal cells. • They contribute to the formation of facial bones, cartilage, peripheral nerves, and parts of the heart. 1/16/2025 11 Embryonic Period: Physiological Process(changes in structure &function) • INDUCE, PROLIFERATE, DIFFERENTIATE AND MORPH, DON’T WAIT! MATURE AND GROW, IT’S YOUR FATE!" 1. Induction The process where one group of cells influences another to differentiate into a specific tissue or organ. 2. Proliferation Rapid cell division, increasing the number of cells. 3. Differentiation(Cyto, Histo, Morpho) Cells specialize to perform specific functions. 4. Morphogenesis The development of the overall shape and structure of tissues and organs. 5. Maturation The final stage where tissues and organs reach their fully functional form. 1/16/2025 12 Facial Development  The facial development that starts in the fourth week of the embryonic period will be completed later in the twelfth week within the fetal period.  At the fourth week, the developing brain, face, and heart are noted. 1/16/2025 13 • All three embryonic layers are involved in facial development: the ectoderm, mesoderm, and endoderm. • The upper part of the face is derived from the frontonasal process, the midface from the maxillary processes, and the lower from the mandibular processes. Early development of the face is also dominated by the proliferation and migration of ectomesenchyme, derived from neural crest cells (NCCs). Facial Development 1/16/2025 14 Stomodeum and Oral Cavity Formation With this disintegration of the membrane, the primitive mouth is increased in depth and enlarges in width across the surface of the midface. Nose and Paranasal Sinus Formation Apparatus Formation  First branchial/ pharyngeal arch also known as the mandibular arch and its associated tissue, includes Meckel cartilage.  Supplied by Trigeminal nerves Apparatus Formation  Second branchial/pharyngeal arch, which is also known as the hyoid arch, is cartilage like that of the mandibular arch, Reichert cartilage. Apparatus Formation  Third branchial/ pharyngeal arch  Has an unnamed cartilage associa ted with it. This cartilage will be responsible for forming parts of the hyoid bone. Apparatus Formation  Both the fourth and the sixth branchial /pharyngeal arch also have unnamed cartilage associated with them, they fuse and form most of the laryngeal cartilages. 1/16/2025 20 TOOTH DEVELOPMENT: INITIATION STAGE Stages of Tooth Development: I Bought Candy Bars After Midnight." I → Initiation Bought → Bud Candy → Cap Bars → Bell After → Apposition Midnight → Maturation 1/16/2025 23 1. Initiation Stage (Week 6-7): • Dental placodes form as localized thickenings of oral ectoderm. • Interaction with neural crest cells induces the formation of the tooth germ. 2. Bud Stage (Week 8): • The enamel organ invaginates into the underlying mesenchyme, creating a tooth bud. 3. Cap Stage (Week 9-10): • The enamel organ forms a cap-like structure over the dental papilla. 4. Bell Stage (Week 11-12): • Cells differentiate into ameloblasts (enamel-forming cells) and odontoblasts (dentin-forming cells). 5. Apposition and Maturation: • Enamel, dentin, and cementum are laid down and mineralized. 1/16/2025 25 • Dental Epithelium → Enamel Organ Enamel organ arises from the dental epithelium and forms ameloblasts, the cells responsible for producing enamel, the hardest substance in the body. Dental Mesenchyme → Dental Papilla Dental papilla forms from the mesenchyme and gives rise to: • Dentin -Odontoblasts: Cells that produce dentin (the layer beneath enamel). • Pulp: The soft, living core of the tooth, containing nerves and blood vessels. • Root Dentin: The dentin in the root of the tooth. Dental Follicle • Surrounds the developing tooth and forms: • Cementum: A calcified tissue covering the root of the tooth, anchoring it to the jaw. • Periodontal Ligament: Connective tissue fibers that hold the tooth in its socket and absorb chewing forces. Teeth w e a r c a n b e t r e a t e d A t t r i t i o n Abrasion Abfraction E r o s i o n Hunter-Schreger bands (HSB). • Hunter-Schreger bands (HSB): • Dark and light bands due to curvature or bends of the rods. • increasing the enamel’s strength. • Near the cusps or incisal ridges, where the enamel is the thickest Celiac Disease ˜ Dental enamel problems stemming from celiac disease involve permanent dentition and include tooth discoloration—white, yellow, or brown spots on the teeth—poor enamel formation, pitting or banding of teeth, and mottled or translucent-looking teeth. ˜ The imperfections are symmetrical and often appear on the incisors and molars. ˜ Tooth defects that result from celiac disease may resemble those caused by too much fluoride or a maternal or early childhood illness 1/16/2025 29 ROOT DEVELOPMENT  The process of root development takes place long after the crown is completely shaped, and the tooth is starting to erupt into the oral cavity.  The structure responsible for root development is the cervical loop.  The cervical loop is the most cervical part of the enamel organ, a bilayer rim that consists of only inner enamel epithelium (IEE) and outer enamel epithelium (OEE). ROOT DEVELOPMENT  To form the root region, the cervical loop begins to grow deeper into the surrounding ectomesenchyme of the dental sac, elongating and moving away from the newly completed crown area to enclose more of the dental papilla tissue, forming the Hertwig epithelial root sheath (HERS). Thus, HERS will determine if the root will be curved or straight, short or long as well as single or multiple. 1/16/2025 33 • Cervical Loop Formation ▪ The cervical loop, located at the junction of the enamel organ and the crown, elongates to form Hertwig’s Epithelial Root Sheath (HERS). ▪ HERS determines the shape, length, and number of roots. • Root Dentin Formation ▪ Inner cells of HERS induce adjacent dental papilla cells to differentiate into odontoblasts, which form root dentin. ▪ Once dentin is deposited, HERS disintegrates. • Epithelial Rests of Malassez ▪ After HERS disintegrates, remnants form clusters called epithelial rests of Malassez in the periodontal ligament. ▪ These remnants can sometimes form cysts later in life. PRIMARY DENTITION PROPERTIES  The actual dates are not as important as the eruption sequence, because there can be a great deal of variation in the actual dates of eruption.  However, the sequence tends to be uniform. Enamel Histology • Enamel tufts: Hypomineralized, Located at the dentino-enamel junction and filled with organic material. Forms between groups of enamel rods at the dentino-enamel junction. • Enamel lamellae are partially mineralized vertical sheets of enamel matrix that extend from the DEJ near the tooth’s cervix to the outer occlusal surface. Transverse section of enamel showing enamel tufts (white arrow) and enamel lamella (black arrow). Dentin Matrix Formation DENTINOGENESIS LPROCESS o$ CREATING DENTIN PRIMARY TEETH _ 14th WEEK of FETAL DEVELOPMENT PERMANENT TEETH L 3 MONTHS AFTER -PROCESS HAPPENS SLOWLY PERFORMED by ODONTOBLASTS —OUTSIDE INWARDS - BEGINS with MANTLE DENTIN ODONTOBLASTS -PREDENTIN -SOFT ORGANIC MATRIX -PROTEINS FIBROBLASTS -KORFF'S FIBERS -THICK COLLAGEN FIBERS -FRAMEWORK of DENTINOGENESIS 1/16/2025 39 Principal Fibers Protect, Gingival Fibers Guard." •Principal → Protection and anchorage of the tooth. •Gingival → Guard and stabilize gingiva. 1/16/2025 40 Principle Fibers "All Hungry Octopuses Appreciate Ice cream!" •All → Alveolar Crest •Hungry → Horizontal •Octopuses → Oblique •Appreciate → Apical •Ice cream → Interradicular 1/16/2025 41 Gingival Fiber : "Dentists Always Care Deeply for Teeth!" •Dentogingival •Alveologingival •Circular •Dentoperiosteal •Transseptal 1/16/2025 42 Primary (Deciduous) Teeth Eruption "Children Like Fruit Candy More" •C → Central Incisors •L → Lateral Incisors •F → First Molars •C → Canines •M → Second Molars CELL ORGANELLES SKIN ANATOMY COME, LET'S GET SOME BREAD" C ORNEUM (OUTER), L UCIDUM, G RANULOSUM, S PINOSUM, B ASALE. • Corneum - tough and protective. • Lucidum - clear layer (found only in thick skin like palms/soles). • Granulosum - cells with granules for keratinization. • Spinosum - "spiny" cells, providing strength and flexibility. • Basale - base layer where cell division happens. 1/16/2025 45 1/16/2025 46 Tooth Designation ∙ Commonly used in orthodontics, is the Palmer Notation Method, also known as the Military Tooth Numbering System. ∙ In this system, the teeth are designated from each other with a right-angle symbol indicating the quadrants and arch, with the tooth number placed inside. 1/16/2025 47 Mixed Dentition Period ∙ The mixed dentition period follows the primary dentition period. ∙ This period occurs between approximately 6 and 12 years of age. ∙ Both primary and permanent teeth are present during this transitional stage. ∙ The final dentition period is the permanent dentition period. ∙ This period begins with shedding of the last primary tooth. 1/16/2025 48 General Dental Terms •Each dental arch can be further divided into two quadrants, with four quadrants in the entire oral cavity. • The correct sequence of words when describing an individual tooth using a D-A-Q-T System is based on the tooth within its quadrant: D for dentition, A for arch, Q for quadrant, and T for tooth type. • Sextants: three parts according to the relationship to the midline: right posterior sextant, anterior sextant, and left posterior sextant. 1/16/2025 49 Root Axis Line (RAL) ∙ Root axis line (RAL), which is an imaginary line representing the long axis of a tooth, drawn in a way to bisect the root (and thus the crown) in the cervical area into two halves. 1/16/2025 50 Restorations: Biologic Width ∙ Biologic width is the distance established by the junctional epithelium and lamina propria attachment to the root surface of a tooth. ∙ This distance is important to consider when fabricating dental restorations, because they must respect the natural architecture of the gingival attachment if harmful consequences are to be avoided. ∙ Assessment for biologic width can be made clinically by measuring the distance between the bone and the restoration margin using a periodontal probe. 1/16/2025 51 PRIMARY DENTITION 1/16/2025 52 1/16/2025 53 Eruption 1/16/2025 54 1/16/2025 55 1/16/2025 56 Differences-(Enamel depth/pulp) 1/16/2025 57 Differences: Roots 1/16/2025 58 Importance of Primary teeth - PRIMATE Space 1/16/2025 59 Leeway Space 1/16/2025 Primary Occlusion 60 •Majority of children have Mesial step between distal of Primary 2nd molars. Mandibular 2nd molars are situated mesially than maxillary. •A smaller but still large group of children exhibit a flush terminal plane. The distal surfaces of the primary 2nd molars are even with each other. •A still smaller minority have a distal step. The mandibular 2nd molars are situated more distally than their maxillary counterparts. Thus, they form a distal step. 1/16/2025 Anatomy of Primary teeth 61 Incisors: resemble the outline of permanent counterpart except Primary do not have mamelons on the incisal ridge and there are no pits on the lingual surface. 1/16/2025 Primary Canines 62 Canines- resemble the outline of their permanent counterparts. The maxillary canine has a sharp cusp and appears especially wide and short. Maxillary Central and Lateral Incisors Central Incisors: • Larger overall; they are the widest teeth mesiodistally in the anterior maxillary arch. • Crown is more symmetrical and fan (mesiodistally wider compared to incisocervical length). • Lingual fossa is less pronounced. • Cingulum is well-developed and centered. • Root is shorter and more conical, with a blunt apex. • Rarely exhibit significant variation. Lateral Incisors: • Smaller and narrower mesiodistally than the central incisors. • Crown is less symmetrical and more rounded. • Lingual fossa is deeper, with more pronounced marginal ridges. • Cingulum is narrower and often slightly off-center to the distal. • Root is longer and thinner, with a more pointed apex. • Frequently display developmental variations (e.g., peg-shaped lateral incisors, congenitally missing). 1/16/2025 66 1/16/2025 67 1/16/2025 68 1/16/2025 69 CLASSIC TRAITS ➢ From the occlusal view, molar crowns taper from the buccal to the lingual EXCEPT for maxillary 1st molars. ➢ From the occlusal view, molar crowns taper distally; this allows more of the occlusal surface to be visible from the distal aspect than the mesial. ➢Maxillary molars have 3 roots: MB, DB, and lingual (palatal). The lingual root is usually the longest and the DB is the shortest. ➢ Mandibular molars have 2 roots: a long mesial root and a slightly shorter distal root. ➢ The root furcation on mandibular molars is close to the cervical line, making the root trunk shorter than on the maxillary molars. MAJOR AND MINOR CUSPS ➢In general, each cusp is formed from its own lobe. ➢Major cusps are large and well developed. ➢Minor cusps are less developed and have smaller proportions. They are less functional than the major cusps and may not always be present. ➢Supplementary cusp is very small and completely afunctional. They are rarely present. 1/16/2025 72 ➢First molars are the most highly developed and largest of the molars and more likely to have major, minor and supplementary cusps. ➢Both the 1st and 2nd maxillary molars have 4 major cusps but only 2 are visible from the buccal view. ➢The longest of the 4 major cusps are the ML, followed by the MB, DB, and the shortest DL (if present). 1/16/2025 73 • Molars (general: crowns larger, squarer, bear more cusps than any other tooth class, have multiple roots, 3rd molars sometimes mistaken for premolars) • Generally speaking, the maxilla molars go from largest to smallest (1st molar to 3rd molar) in size and morphology. The crowns generally have 4 cusps. • The 1st molar has three roots (two buccal and one lingual, which when seen from the buccal position the lingual root comes into view in the middle of the two buccal roots). The occlusal surface is described as a rhomboid in shape with 4 distinctive cusps. • Oblique ridge max molars only and transverse ridge one on max 2 on mandibular. • The 2nd molar has three roots but the two buccal roots are nearly parallel with each other and is described as heart shape in the occlusal view. • The 3rd molar has three roots present but the two buccal roots are often fused, and the outline of the occlusal surface is also described as a heart shape. The 3rd molar also shows greater developmental variation than either the 1st or • 3rd molars are often the tooth that is congenitally missing. All roots of the molars angle distally with respect to the major crown axes (White & Folkens 2005: 152). 1/16/2025 74 1/16/2025 75 Joint Movement ˜ Two basic types of movement of the mandible are performed by the TMJ and its associated muscles of mastication: ˜ a gliding movement and ˜ a rotational movement. 1/16/2025 76 • The muscles of mastication include the • Temporalis, • And Masseter, • Pterygoid muscles, medial and lateral. • These muscles are involved in mastication using these two movements. 1/16/2025 77 1/16/2025 78 TMD: Acute Episode • Trismus or the inability to normally open the mouth. • When the patient tries to close and elevate the mandible, the condylar heads cannot move posteriorly because both the bony relationships prevent this, and the muscles have become spastic. 1/16/2025 79 Overjet • Overjet is measured in millimeters with the tip of a periodontal probe, once a patient is in CO. • The probe is placed at 90°or at a right angle to the labial surface of a mandibular incisor at the base of the incisal ridge of a maxillary incisor. 1/16/2025 80 • Overbite is measured in millimeters with the tip of a periodontal probe after a patient is placed in CO. • The probe is placed on the incisal edge of the maxillary incisor at 90º or at a right angle to the mandibular incisor. • When the reverse is the case and the mandibular arch and its incisors extends beyond the maxillary arch and its incisors, it is causes an underbite. 1/16/2025 81 Lymph Nodes • The lymph flows (arrows) into the lymph node through many afferent vessels. (A is first comes in) • On one side of the node is a depression, or hilus, where the lymph through fewer vessels, or even a single efferent vessel. (E is Exit) • Primary or Secondary. • Region drains into primary nodes. • Primary nodes, in turn, drain into secondary nodes (or central nodes). Lymphatics: General Drainage pattern of body Right jugular trunk Left jugular trunk Enters venous system near junction of left subclavian vein and left internal jugular Thoracic duct Left side of head, neck, thorax, entire abdomen, pelvis, lower extremities Enters venous system near junction of right subclavian vein and right internal jugular Right side of head, neck, thorax *Lymphatic vessels are small and directly drain tissues and connect lymph nodes. *Lymphatic ducts are much larger, receive lymph from many lymphatic vessels, and drain into the venous system. 1/16/2025 83 Superficial Lymph Nodes of the Head (five categories) 1. Facial; lie along facial vein. 2 Superficial Parotid; superficial to parotid gland. 3. Anterior Auricular; anterior to external auditory meatus. 4. Posterior Auricular; posterior to external auditory meatus. 5. Occipital; lie in the occipital region. *Tissue drainage: buccal mucosa, skin of zygomatic and infraorbital regions, scalp, external ear, lacrimal gland Deep Lymph Nodes of Head (two categories) 1. Deep Parotid; lie deep in the parotid gland, superficial to the masseter muscle 2. Retropharyngeal; posterior to the pharynx at the level of the atlas (first cervical vertebrae). *Tissue drainage: parotid gland, paranasal sinuses, hard and soft palate, middle ear Superficial Cervical Lymph Nodes (4 categories) 1. Submental; inferior to the chin in the submental space. 2. Submandibular; along the inferior border of the mandible, superficial to the submandibular salivary gland 3. External Jugular; along the external jugular vein, superficial to the sternocleidomastoid muscle. 4. Anterior Jugular; along the anterior jugular vein, anterior to the sternocleidomastoid muscle. Tissue drainage: 1.Submental and submandibular; teeth and related tissues, apex and body of tongue, anterior hard palate, floor of mouth, lips, chin, sub- mandibular and sublingual glands, cheeks. 2. External and anterior jugular; superficial tissues in the anterior and posterior triangles. Deep Cervical Lymph Nodes (2 categories) 1. Superior Deep Cervical; lie along internal jugular vein, superior to the omohyoid muscle. *Jugulo-digastric- becomes enlarged when a palatine tonsil or the pharynx is involved in infection. 2. Inferior Deep Cervical; lie along internal jugular vein, inferior to the omohyoid muscle. *Jugulo-omohyoid-drains the submental region and base of the tongue. Additional Deep Cervical Nodes 1. Accessory; lie along accessory nerve 2. Subclavicular; lie along clavicle. *Tissue drainage: mostly secondary nodes 1/16/2025 88 Sequence of lymph nodes draining various tissues Most of face, scalp, ear, orbit, sinuses, nasal cavities Most maxillary and mandibular teeth and associated tissues, apex and body of tongue, floor of mouth, sublingual and submandibular glands, lips Maxillary third molars and associated tissues, base of tongue, pharynx, tonsils Tissue Primary nodes Secondary nodes Submental and submandibular nodes Facial, anterior auricular, retroauricular, occipital superficial and deep parotid, and retropharyngeal nodes Submandibular, deep cervical nodes Retropharyngeal, deep cervical nodes Neck and cervical viscera Superficial and deep cervical nodes Right jugular trunk Right subclavian vein Left jugular trunk Left subclavian vein Thoracic duct Endocrine-secrete substance into blood, examples-adrenal gland pituitary gland, thyroid gland Exocrine-secretes substance through a duct leading outside the body (digestive tract, skin). Examples- sweat glands, salivary glands, mucous glands, pancreas Where are the salivary ducts located intraorally? Parotid (Stensen) duct opening > Parotid Papilla. Submandibular (Wharton) duct opening Sublingual Caruncle. Plica Sublingualis Sublingual Caruncle Parotid Papilla Sublingual duct opening - Via Duct of Bartholin → Sublingual Caruncle. OR Via smaller Ducts of Rivinus > Plica Sublingualis. Thyroid and Parathyroid glands (endocrine) Thyroid: 1.Located inferior to the larynx along the sides of the trachea. 2. Has 2 lobes, connected by an isthmus. 3. Secrets thyroxin which influences metabolic rate Parathyroid: 1. Four small glands located on the posterior aspect of the thyroid gland. 2. Secrete parathyroid hormone, which regulates calcium and phosphate levels. Thymus 1. Located in the thorax and anterior region of the base of the neck, deep to the sternum and sternohyoid and sternothyroid muscles. 2. Involved in the maturation of T-cell lymphocytes 3. Shrinks in size with age Teeth and Periodontium Commonly Involved in Clinical Presentations of Abscesses and Fistulae 1. Abscess in maxillary vestibule or palate, 2. Penetration of nasal floor 3. Abscess in nasolabial skin region 4. Penetration into maxillary sinus 5. Abscess in buccal skin region 6. Abscess in mandibular vestibule 7. Abscess in submental skin region 8. Abscess in sublingual region → Any maxillary tooth (except maxillary canines for palate) • Maxillary central incisors → Maxillary canine → Maxillary molars • Maxillary or mandibular molars → Any mandibular tooth • Mandibular incisors → Mandibular molars with short roots superior to mylohyoid Teeth/Periodontium and Spaces Possibly Involved With Various Clinical Presentations of Cellulitus Location Space Involved Teeth/Periodontium Involved Infraorbital region Zygomatic region Buccal region Buccal space Maxillary premolars, and maxillary and mandibular molars Submental region Submental space Anterior mandibular teeth Submandibular region (unilateral) Submandibular space Posterior mandibular teeth Submandibular region (bilateral) Submental, sublingual Submandibular spaces Spread of mandibular dental infection Lateral cervical region Parapharyngeal space Spread of mandibular dental infection 4 major routes 1. Spread to the paranasal sinuses 2. Spread by the vascular system 3. Spread by the Lymphatic system 4. Spread by spaces Bacteria can spread through the blood from infected dental tissues to other areas. (1) An infected thrombus (blood clot) can travel as an embolus and spread infection. (2) Transient bacteremia (presence of bacteria in the blood) can occur during dental treatment. For example, a needle advanced too far during an attempt at PSA block can penetrate the pterygoid venous plexus after being inserted through infected tissue (needle track contamination). (3) The pterygoid venous plexus drains the dental tissues and communicates with the cavernous sinus via the inferior ophthalmic vein. (4) Infections in dental tissues can initiate an inflammatory response, which can result in thrombus formation, blood stasis, and increased extravascular pressure. (5) Veins in the head do not have valves, so backflow of blood carrying pathogens into the cavernous sinus can occur. Cranial Nerve Names & Function Names: "Only One Of The Two Athletes Felt Very Good, Victorious, And Healthy" Function: "Some Say Marry Money, But My Brother Says Big Brains Matter Most" 1. Only (Some) = Olfactory (S) 2. One (Say) = Optic (S) 3. Of (Marry) = Oculomotor (M) 4. The (Money) = Trochlear (M) 5. Two (But) = Trigeminal (B) 6. Athletes (My) = Abducens (M) 7. Felt (Brother) = Facial (B) 8. Very (Says) = Vestibulocochlear (S) 9. Good (Big) = Glossopharyngeal (B) 10. Victorious (Brains) = Vagus (B) 11. And (Matter) = Accessory (M) 12. Healthy (Most) = Hypoglossal (M) Blood Branching of Carotid Arteries from Aorta Common Carotid Arteries To upper limb Subclavian artery Subclavian artery Brachiocephalic trunk Aortic arch From heart To thorax, abdomen, legs Blood Flow LAB RAT LEFT ATRIUM=BICUSPID RIGHT ATRIUM= TRICUSPID Right ABC'S THE AORTIC ARCH GIVES RISE TO -BRACIOCHEPHALIC TRUNK COMMON COROTID ARTERY SUBCLAVIAN ARTERY Left: carotid & subclavian LUNG BAGHT PULMONARY ARTERY PILNONARY WEIN TRICUSPID VALVE L E F T LUNG S U P. VENA CAVA AORTIC ARCH LEFT PULMONARY ARTERY RIGHT ATRIUM PALMONART PULMONARY ARTERY LEFT ATRIUM PULMONARY VINN PELNONARY WEIN LEFT VENTRICLE RIGHT VENTRICLE B L O O D FLOW THROUGH THE HEART MITRAL VALVE I N 2 MINUTES INF. VENA CAVA Foramina, Canals, etc. Traversed by Various Blood Vessels Vertebral artery- transverse foramina in cervical vertebrae, foramen magnum Internal carotid artery-carotid canal, foramen lacerum, groove for the internal carotid artery Maxillary artery-terminates in pterygoid fossa Posterior superior alveolar artery-posterior superior alveolar foramina Infraorbital artery-inferior orbital fissure, infraorbital groove, infraorbital canal, infraorbital foramen Sphenopalatine artery-sphenopalatine foramen, incisive canal, incisive foramen Descending palatine artery-divides into greater and lesser palatine arteries which traverse same named foramina Inferior alveolar artery-mandibular foramen, mandibular canal Mental artery-mental foramen Mylohyoid artery-mylohyoid groove Ophthalmic artery-optic canal Anterior and posterior ethmoid arteries-anterior and posterior ethmoid foramina Middle menningeal artery-foramen spinosum Internal jugular-jugular foramen EXTERNAL CAROTID ARTERY LINGUAL- → SUPRAHYOID → DORSAL LINGUAL → SUBLINGUAL → DEEP LINGUAL - TONGUE - SOFT PALATE - SUBLINGUAL SALIVARY GLAND - MUSCLES ATTACHED to HYOID ARTERIAL SUPPLY: FACIAL- - MAXILLARY (3 PARTS) → ASCENDING MANDIBULAR PART: PALATINE → INFERIOR ALVEOLAR → TONSILAR - LOWER TEETH - CHEEK → SUBMENTAL - MYLOHYOID → GLANDULAR BRANCHES MUSCULAR PART: → SUPERIOR LABIAL → MASSETERIC → - MASSETER → INFERIOR LABIAL → DEEP TEMPORAL → - TEMPORALIS PTERYGOPALATINE PART: - SOFT PALATE - PALATINE TONSIL - ROOT of TONGUE - SUBMANDIBULAR & SUBLINGUAL SALIVARY GLANDS - LIPS → DESCENDING - HARD PALATE PALATINE - SOFT PALATE → POSTERIOR SUPERIOR ALVEOLAR - PALATINE TONSIL - UPPER PREMOLAR & M O L A R S → INFRAORBITAL → - UPPER TEETH It gives off six branches before it divides into two terminating branches. They are in ascending order: • superior thyroid, • ascending pharyngeal, • lingual, • facial, • occipital, and • posterior auricular. The two terminating branches are the • maxillary and • superficial temporal arteries. Lingual artery supplies the tongue, Floor of the mouth and suprahyoid muscles. FACIAL ARTERY 1) The facial artery runs anteriorly and superiorly near the labial commissure and along the lateral side of the naris of the nose. 2) The facial artery terminates at the medial canthus of the eye. 3) Supplies the face in the oral, buccal, zygomatic, nasal, infraorbital, and orbital regions. o Cervical – Ascending Palatine, submental and tonsillar o Facial branches – Glandular (submandibular), Angular, Superior Labial & Inferior labial *Face, palate, tonsils, submandibular, stylohyoid, digastric muscles Maxillary artery Acessory middle meningeal artery Masseteric artery Middle meningeal artery Deep temporal arteries Pharyngeal artery - Artery of pterygoid canal Sphenopalatine artery Infraorbital artery Anterior superior alveolar artery Deep auricular artery Anterior tympanic artery Inferior alveolar artery Mylohyoid artery Posterior superior alveolar artery Greater palatine artery Lesser palatine arteries Buccal artery Lingual branch Incisive branches Mental artery • 1st Mandibular part • 5 branches → Retromandibular foramen • 2nd Pterygoid part • 5 branches → Infratemporal foramen • 3rd Pterygopalatine part • 6 branches → Pterygopalatine foramen Epicranial Surprise Orbicularis oculi Closing eyelid and squinting Corrugator supercilii Frowning Orbicularis oris Closing and pursing lips as well as pouting and grimacing Buccinator Compresses the cheeks during chewing Risorius Stretching lips Levator labii superiori s Raising upper lip Levator labii superiori s alaeque nasi Raising upper lip and dilating nares with sneer Zygomaticus major Smiling Zygomaticus minor Raising upper lip to assist in smiling Levator anguli oris Smiling Depressor anguli oris Frowning Depressor labii inferi oris Lowering lower lip Mentalis Raising chin protruding lower lip Platysma Raising neck skin and grimacing Class I Malocclusion •The MB cusp of the maxillary first molar occludes with the MB groove of the mandibular first molar. Facial profile as described by many clinicians with the older term mesognathic. Class II Malocclusion Class II malocclusion (distoclusion) MB cusp of the maxillary first molar occluding (by more than the width of a premolar) mesial to the MB groove of the mandibular first molar. • The older term for describing the facial profile in Class II, division I, is retrognathic. Class II Malocclusion Division I Division II • Based on the • Position of the anterior teeth. • Shape of the palate • Resulting facial profile. Class II Malocclusion Division I maxillary incisors protrude facially from the mandibular incisors causing a severe over bite (or deep bite). Upper incisors are tilted outwards, creating significant overjet. Division II Protrusive maxillary incisors, the maxillary central incisors are either upright or retruded. Upper incisors are labially inclined. Class III Malocclusion The MB cusp of the maxillary first molar occludes (by more than the width of a premolar) distal to the MB groove of the mandibular first molar. • The older term that describes the facial profile with a Class III malocclusion is prognathic.
Updated 143d ago
flashcards Flashcards (7)
Right atrium
Updated 209d ago
flashcards Flashcards (10)
Right Atrium
Updated 453d ago
flashcards Flashcards (5)
0.00
studied byStudied by 0 people