1/53
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Kinematics for final velocity
v=v₀+at
Kinematics for final position
x=x₀+v₀t+½at²
Kinematics for final velocity squared
v²=v₀²+2a(x-x₀)
Net force
∑F=Fnet=ma
Power-force differential
F=dP/dt
Impulse
J=∫Fdt=∆p
Momentum
p=mv
Friction
Ffric≤µN
Work integral
W=∫F·dr
Kinetic Energy
K=½mv²
Power-work differential
P=dW/dt
Power dot product
P=F·v
Gravitational Potential Energy
∆Ug=mgh
Centripetal acceleration
ac=v²/r=ω²r
Torque
τ=r×F
Net torque
Στ=τnet=Iα
Rotational Inertia
I=∫r²dm=∑mr²
Center of mass
rcm=∑mr/∑m
Translational velocity
v=rω
Angular momentum
L=r×p=Iω
Rotational kinetic energy
K=½Iω²
Rotational kinematics for final velocity
ω=ω₀+αt
Rotational kinematics for final position
θ=θ₀+ω₀t+½αt²
Hooke's law
Fs=-kx
Elastic Potential Energy
Us=½kx²
General period
T=2π/ω=1/ƒ
Period of spring
Ts=2π√(m/k)
Period of pendulum
Tp=2π√(l/g)
Gravitation force
Fg=-(Gm₁m₂/r²)∧r
General gravitational potential energy
Ug=-Gm₁m₂/r
Coulomb's Law
F=(1/(4πε₀))(q₁q₂/r)
Electric Field
E=F/q
Charge-line integral
∮E·dA=Q/ε₀
Differential for electric field
E=-dV/dr
Electric potential
V=(1/(4πε₀))∑i(qi/ri)
Electric potential energy
UE=qV=(1/(4πε₀)(q₁q₂/r)
Capacitance-charge
C=Q/V
Capacitance-dielectric
C=κε₀A/d
Parallel capacitance
Cp=∑iCi
Capacitance in series
1/Cs=∑i1/Ci
Differential current
I=dQ/dt
Capacitance potential energy
Uc=½QV=½CV²
Resistance
R=ρl/A
Electric Field-resistivity
E=ρJ
Current
I=NevA
Electric Potential-simplified
V=IR
Resistance in series
Rs=∑iRi
Resistance in parallel
1/Rp=∑i1/Ri
Power-EM
P=IV
Magnetic force
Fm=qv×B
Ampere's Law
∮B·dl=µ₀I
Biot-Savart Law
dB=(µ₀/(4π))(Idl×r/r³)
Force magnetic field
F=∫I dl × B
Magnetic field series
Bs=µ₀nI