AP calc graphs to memorize

0.0(0)
studied byStudied by 0 people
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/19

flashcard set

Earn XP

Description and Tags

parent functions

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

20 Terms

1
New cards

linear function

f(x) = x

D: xeR
R: yeR

x-int + y-int: (0,0)

x→ -∞, y→ -∞
x→ ∞, y→ ∞

origin symmetry

<p>f(x) = x</p><p>D: xeR<br>R: yeR</p><p>x-int + y-int: (0,0)</p><p>x→ -<span>∞, y→ -∞</span><br>x→ <span>∞, y→ ∞</span></p><p>origin symmetry</p>
2
New cards

quadratic function

f(x) =

D:
R:

x-int

x→ -∞, y→
x→ ∞, y→

symmetry

asymptote

3
New cards

cubic function

f(x) =

D:
R:

x-int

x→ -∞, y→
x→ ∞, y→

symmetry

asymptote

4
New cards

cube root function

f(x) =

D:
R:

x-int

x→ -∞, y→
x→ ∞, y→

symmetry

asymptote

5
New cards

square root function

f(x) =

D:
R:

x-int

x→ -∞, y→
x→ ∞, y→

symmetry

asymptote

6
New cards

logarithmic function

f(x) = ln x

D:
R:

x-int

x→ -∞, y→
x→ ∞, y→

symmetry

asymptote

7
New cards

exponential function

f(x) = e^x

D:xeR
R:y>0

y-int: (0,1)

x→ -∞, y→ 0
x→ ∞, y→ infinity

HA: y=0

8
New cards

reciprocal function / inverse function

f(x) = 1/x

D:xeR
R: -1>y>1

no intercept

x→ -∞, y→ 0
x→ ∞, y→ 0

origin symmetry

VA: x=0
HA: y=0

9
New cards

f(x) = 1/x²

D:
R:

x-int

x→ -∞, y→
x→ ∞, y→

symmetry

asymptote

10
New cards

absolute value function

f(x) = |x|

D: xeR
R: y>0, yeR

x-int and y-int: (0,0)

x→ -∞, y→ ∞
x→ ∞, y→∞

y-axis symmetry

<p>f(x) = |x|</p><p>D: xeR<br>R: y<u>&gt;</u>0, yeR</p><p>x-int and y-int: (0,0)</p><p>x→ -∞, y→ ∞<br>x→ ∞, y→∞</p><p>y-axis symmetry</p>
11
New cards

trigonometric sine function

f(x) = sin x

D: xeR
R: [-1, 1]

x-int: (0,0), pi*n (neZ)
y-int: (0,0)

x→ -∞, y→
x→ ∞, y→

origin symmetry

<p>f(x) = sin x</p><p>D: xeR<br>R: [-1, 1]</p><p>x-int: (0,0), pi*n (neZ)<br>y-int: (0,0)</p><p>x→ -∞, y→ <br>x→ ∞, y→</p><p>origin symmetry</p>
12
New cards

trigonometric cosine function

f(x) = cos x

D: xeR
R: [-1, 1]

x-int: pi/2 + pi*n, neZ
y-int: (0,1)

x→ -∞, y→
x→ ∞, y→

y-axis symmetry

<p>f(x) = cos x</p><p>D: xeR<br>R: [-1, 1]</p><p>x-int: pi/2 + pi*n, neZ<br>y-int: (0,1)</p><p>x→ -∞, y→ <br>x→ ∞, y→</p><p>y-axis symmetry</p>
13
New cards

trigonometric tangent function

f(x) = tan x

d: x ≠ pi/2 (2n+1), neZ, xeR
R: yeR

x-int and y-int: (0,0)

x→ -∞, y→
x→ ∞, y→

origin symmetry

VA: pi n, neZ

<p>f(x) = tan x</p><p>d: x<strong> </strong>≠ pi/2 (2n+1), neZ, xeR<br>R: yeR</p><p>x-int and y-int: (0,0)</p><p>x→ -∞, y→ <br>x→ ∞, y→</p><p>origin symmetry</p><p>VA: pi n, neZ</p>
14
New cards

f(x) = x²/³

d: xeR
R: y>0, yeR

x-int/y-int: (0,0)

x→ -∞, y→ ∞
x→ ∞, y→ ∞

y-axis symmetry

<p>f(x) = x²/³</p><p>d: xeR<br>R: y<u>&gt;</u>0, yeR</p><p>x-int/y-int: (0,0)</p><p>x→ -∞, y→ ∞<br>x→ ∞, y→ ∞</p><p>y-axis symmetry</p>
15
New cards

semicircle function

f(x) = \sqrt{r² - x²}

D: -r <x< r
R: 0< y < r

x-int: (-r,0) and (r,0)
y-int: (0,r)

x→ -∞, y→
x→ ∞, y→

y-axis symmetry

<p>f(x) = \sqrt{r² - x²}</p><p>D: -r <u>&lt;</u>x<u>&lt;</u> r<br>R: 0<u>&lt; </u>y <u>&lt; </u>r</p><p>x-int: (-r,0) and (r,0)<br>y-int: (0,r)</p><p>x→ -∞, y→ <br>x→ ∞, y→</p><p>y-axis symmetry</p>
16
New cards

inverse trig function (tan)

f(x) = Arc tan x

D; xeR
R: (-pi/2, pi/2)

x-int/y-int: (0,0)

x→ -∞, y→ -pi/2
x→ ∞, y→ pi/2

origin symmetry

HA at y = -pi/2 and pi/2

<p>f(x) = <em>Arc</em> tan x</p><p>D; xeR<br>R: (-pi/2, pi/2)</p><p>x-int/y-int: (0,0)</p><p>x→ -∞, y→ -pi/2<br>x→ ∞, y→ pi/2</p><p>origin symmetry</p><p>HA at y = -pi/2 and pi/2</p>
17
New cards

sign / signum function

f(x) = |x| / x

D: xeR (-∞, ∞)
R: y = {-1, 0, 1}

x-int & y-int: (0,0)

x→ -∞, y→ ?
x→ ∞, y→ ?

symmetry?

asymptote?

<p>f(x) = |x| / x</p><p>D: xeR   (-∞, ∞)<br>R: y = {-1, 0, 1}</p><p>x-int &amp; y-int: (0,0)</p><p>x→ -∞, y→ ?<br>x→ ∞, y→ ?</p><p>symmetry?</p><p>asymptote?</p>
18
New cards

f(x) = 1/ (x²+1)

D: x ≠ 0, xeR
R: 0< y< 1, yeR

y-int: (0,1)

x→ -∞, y→ 0
x→ ∞, y→ 0

y-axis symmetry

HA: y = 0

<p>f(x) = 1/ (x²+1)</p><p>D: x<strong> </strong>≠ 0<strong>, </strong>xeR<br>R: 0&lt; y<u>&lt; </u>1, yeR</p><p>y-int: (0,1)</p><p>x→ -∞, y→ 0<br>x→ ∞, y→ 0</p><p>y-axis symmetry</p><p>HA: y = 0</p>
19
New cards

hyperbolic cosine function

f(x) = ½ (e^x + e^-x) = cosh x

D: xeR
R: {y|y>1, yeR} [1, ∞)

y-int: (0,1)

x→ -∞, y→ ∞
x→ ∞, y→ ∞

y-axis symmetry

20
New cards

step function / greatest integer function

f(x) = [| x |]

D: xeR
R: yeZ (integers)

x-int: (x,0) when 0 < x < 1
y-int: (0,0)

x→ -∞, y→ ?
x→ ∞, y→ ?