AP Calculus BC: Limits, Derivatives, Integrals, & Theorems

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/42

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

43 Terms

1
New cards

d/du [ |u| ]

u(u’) / |u| if u ≠ 0

2
New cards

d/dx [ loga u ]

u’ / (ln a)(u)

3
New cards

d/du [ au ]

(ln a)(au )(u')

4
New cards

d/dx [ cot u ]

-csc² u (u')

5
New cards

d/dx [ sec u ]

(sec u tan u) (u')

6
New cards

d/du [ csc u ]

-(csc u cot u) (u')

7
New cards

d/dx [ arcsin u ]

(u') / √(1 - u²)

8
New cards

d/dx [ arccos u ]

-(u') / √(1 - u²)

9
New cards

d/dx [ arctan u ]

(u') / (1 + u²)

10
New cards

d/dx [ arccot u ]

-(u') / (1 + u²)

11
New cards

d/dx [ arcsec u ]

(u') / |u| √(u² - 1)

12
New cards

d/dx [ arccsc u ]

-(u') / |u| √(u² - 1)

13
New cards

d/dx [ sin u ]

cos(u) (u')

14
New cards

d/dx [ cos u ]

- sin(u) (u')

15
New cards

d/dx [ tan u ]

sec²(u) (u')

16
New cards

The Mean Value Theorem

states that if a function is continuous on a closed interval [ a, b ] and differentiable on the open interval ( a, b ), then there exists at least one point “c” in the open interval ( a, b ) where the derivative equals the average rate of change over that interval (difference quotient of a and b).

17
New cards

Rolle’s Theorem

states that if a function is continuous on a closed interval [ a, b ] and differentiable on the open interval ( a, b ), and f(a) = f(b), then there exists at least one point "c" in ( a, b ) where the derivative is zero.

18
New cards

Intermediate Value Theorem

This theorem states that for any value “k” between f(a) and f(b) for a continuous function on [a, b], there exists at least one point “c” in (a, b) such that f(c) equals that value “k”. Must use the following statement: “f(x) is continuous and f(a) < k < f(b). By the intermediate Value Theorem, f(c) = k for at least one value of “c” between “a” and “b”.

19
New cards

∫ kf(u) du

k ∫ f(u) du

20
New cards

∫ du

u + C

21
New cards

∫ un du

un+1 / n+1 + C

22
New cards

∫ 1/u du

ln |u| + C

23
New cards

∫ eu du

eu + C

24
New cards

∫ sin u du

-cos u + C

25
New cards

∫ cos u du

sin u + C

26
New cards

∫ tan u du

-ln |cos u| + C

27
New cards

∫ cot u du

ln |sin u| + C

28
New cards

∫ sec u du

ln |sec u + tan u| + C

29
New cards

∫ csc u du

-ln |csc u + cot u| + C

30
New cards

∫ sec2 u du

tan u + C

31
New cards

∫ csc2 u du

-cot u + C

32
New cards

∫ sec u tan u du

sec u + C

33
New cards

∫ csc u cot u du

-csc u + C

34
New cards

∫ 1 / √(a2 - u2) du

arcsin (u/a) + C

35
New cards

∫ 1 / (a2 + u2) du

(1/a) arctan(u/a) + C

36
New cards

∫ 1 / u√(u2 - a2) du

(1/a) arcsec(|u|/a) + C

37
New cards

∫ au du

(au / ln a) + C

38
New cards

∫ ln x dx

x ln(x) - x + C

39
New cards

Let limx→c f(x) = L // limx→c kf(x) =

kL

40
New cards

Let limx→c f(x) = L and limx→c g(x) = M // limx→c f(x) ± g(x) =

L ± M

41
New cards

Let limx→c f(x) = L and limx→c g(x) = M // limx→c f(x)g(x) =

LM

42
New cards

Let limx→c f(x) = L and limx→c g(x) = M , limx→c f(x)/g(x) =

L/M, M ≠ 0.

43
New cards

Let limx→c f(x) = L // limx→c f(x)k =

Lk