1/42
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
d/du [ |u| ]
u(u’) / |u| if u ≠ 0
d/dx [ loga u ]
u’ / (ln a)(u)
d/du [ au ]
(ln a)(au )(u')
d/dx [ cot u ]
-csc² u (u')
d/dx [ sec u ]
(sec u tan u) (u')
d/du [ csc u ]
-(csc u cot u) (u')
d/dx [ arcsin u ]
(u') / √(1 - u²)
d/dx [ arccos u ]
-(u') / √(1 - u²)
d/dx [ arctan u ]
(u') / (1 + u²)
d/dx [ arccot u ]
-(u') / (1 + u²)
d/dx [ arcsec u ]
(u') / |u| √(u² - 1)
d/dx [ arccsc u ]
-(u') / |u| √(u² - 1)
d/dx [ sin u ]
cos(u) (u')
d/dx [ cos u ]
- sin(u) (u')
d/dx [ tan u ]
sec²(u) (u')
The Mean Value Theorem
states that if a function is continuous on a closed interval [ a, b ] and differentiable on the open interval ( a, b ), then there exists at least one point “c” in the open interval ( a, b ) where the derivative equals the average rate of change over that interval (difference quotient of a and b).
Rolle’s Theorem
states that if a function is continuous on a closed interval [ a, b ] and differentiable on the open interval ( a, b ), and f(a) = f(b), then there exists at least one point "c" in ( a, b ) where the derivative is zero.
Intermediate Value Theorem
This theorem states that for any value “k” between f(a) and f(b) for a continuous function on [a, b], there exists at least one point “c” in (a, b) such that f(c) equals that value “k”. Must use the following statement: “f(x) is continuous and f(a) < k < f(b). By the intermediate Value Theorem, f(c) = k for at least one value of “c” between “a” and “b”.
∫ kf(u) du
k ∫ f(u) du
∫ du
u + C
∫ un du
un+1 / n+1 + C
∫ 1/u du
ln |u| + C
∫ eu du
eu + C
∫ sin u du
-cos u + C
∫ cos u du
sin u + C
∫ tan u du
-ln |cos u| + C
∫ cot u du
ln |sin u| + C
∫ sec u du
ln |sec u + tan u| + C
∫ csc u du
-ln |csc u + cot u| + C
∫ sec2 u du
tan u + C
∫ csc2 u du
-cot u + C
∫ sec u tan u du
sec u + C
∫ csc u cot u du
-csc u + C
∫ 1 / √(a2 - u2) du
arcsin (u/a) + C
∫ 1 / (a2 + u2) du
(1/a) arctan(u/a) + C
∫ 1 / u√(u2 - a2) du
(1/a) arcsec(|u|/a) + C
∫ au du
(au / ln a) + C
∫ ln x dx
x ln(x) - x + C
Let limx→c f(x) = L // limx→c kf(x) =
kL
Let limx→c f(x) = L and limx→c g(x) = M // limx→c f(x) ± g(x) =
L ± M
Let limx→c f(x) = L and limx→c g(x) = M // limx→c f(x)g(x) =
LM
Let limx→c f(x) = L and limx→c g(x) = M , limx→c f(x)/g(x) =
L/M, M ≠ 0.
Let limx→c f(x) = L // limx→c f(x)k =
Lk