1/34
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
√(a² - x²)
Substitute: x = a sin θ
Differential: dx = a cos θ dθ
Limits: -π/2 ≤ θ ≤ π/2
Back substitute: θ = arcsin(x / a)
√(a² + x²)
Substitute: x = a tan θ
Differential: dx = a sec² θ dθ
Limits: -π/2 < θ < π/2
Back substitute: θ = arctan(x / a)
√(x² - a²)
Substitute: x = a sec θ
Differential: dx = a sec θ tan θ dθ
Limits: 0 ≤ θ < π/2 or π ≤ θ < 3π/2
Back substitute: θ = arcsec(x / a)
or
Substitute: x = a cosh u
Differential: dx = a sinh u du
Limits: u ≥ 0
Back substitute: u = arccosh(x / a)
√(a² - (bx)²)
Substitute: x = (a/b) sin θ
Differential: dx = (a/b) cos θ dθ
Limits: -π/2 ≤ θ ≤ π/2
Back substitute: θ = arcsin(bx / a)
√(a² + (bx)²)
Substitute: x = (a/b) tan θ
Differential: dx = (a/b) sec² θ dθ
Limits: -π/2 < θ < π/2
Back substitute: θ = arctan(bx / a)
√((bx)² - a²)
Substitute: x = (a/b) sec θ
Differential: dx = (a/b) sec θ tan θ dθ
Limits: 0 ≤ θ < π/2 or π ≤ θ < 3π/2
Back substitute: θ = arcsec(bx / a)
√(x² + a²)
Substitute: x = a sinh u
Differential: dx = a cosh u du
Limits: -∞ < u < ∞
Back substitute: u = arcsinh(x / a)