1/56
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Index Law 1
a¹ = a.
Index Law 2
a^m × a^n = a^(m+n).
Index Law 3
a^m ÷ a^n = a^(m-n).
Index Law 4
(a^m)^n = a^(m×n).
Index Law 5
(ab)^m = a^m × b^m.
Index Law 6
(a/b)^m = a^m / b^m.
Zero Index
a⁰ = 1 (a ≠ 0).
Negative Indices
a^(-m) = 1 / a^m.
Fractional Indices
a^(1/n) = n√a; a^(m/n) = (n√a)^m.
Rational Numbers
Expressed as fraction of two integers.
Irrational Numbers
Cannot be expressed as simple fraction; decimals non-repeating/non-terminating.
Surds
Irrational roots, e.g., √2.
Like Surds
Multiples of same surd; can be added/subtracted.
Simplifying Surds
√x × √y = √(xy).
Rationalising Denominator
x / √y = (x√y) / y.
Binomial Products with Surds
Expand using distributive law (FOIL).
Definition of a logarithm
log_b(a) = c means b^c = a
Common logarithm
Base 10 logarithm: log = log₁₀
Natural logarithm
ln = log base e
Change of base formula
logb(a) = logc(a) / log_c(b)
log_b(b) = ?
log_b(b) = 1
log_b(1) = ?
log_b(1) = 0
log_b(a^n) = ?
n × log_b(a)
logb(a) + logb(c) = ?
log_b(a × c)
logb(a) - logb(c) = ?
log_b(a ÷ c)
log_b(1/a) = ?
-log_b(a)
log_b(√a) = ?
(½) × log_b(a)
Exponential form to log
3^x = 81 → log₃(81) = x
Solve: log₅(x) = 3
x = 5^3 = 125
If log_b(x) = y →
x = b^y
Inverse of exponential
Logarithmic function
Domain of log(x)
x > 0
Range of log(x)
All real numbers
Graph of y = log(x)
Passes through (1,0); vertical asymptote at x = 0
Index Law 1 (Multiplying)
a^m × a^n = a^(m+n)
Index Law 2 (Dividing)
a^m ÷ a^n = a^(m−n)
Index Law 3 (Power of a power)
(a^m)^n = a^(mn)
Zero index
a^0 = 1 (a ≠ 0)
Negative index
a^(−n) = 1 / a^n
Fractional index
a^(m/n) = ⁿ√(a^m) = (ⁿ√a)^m
Surd
An irrational root (e.g., √2, ³√5)
Simplifying surds
√ab = √a × √b
Rationalising denominator (simple)
1 / √a = √a / a
Rationalising denominator (binomial)
Multiply by conjugate: (a + √b)(a − √b)
Exponential equation
y = a^x (growth/decay depending on a)
Exponential growth
y = a^x, where a > 1
Exponential decay
y = a^x, where 0 < a < 1
Logarithm definition
logₐx = y ↔ a^y = x
logₐ(a)
1
logₐ(1)
0
logₐ(a^x)
x
a^(logₐx)
x
Change of base rule
logₐb = logc(b) / logc(a)
Solving log equations
Rewrite in exponential form or use log rules
Log rule 1 (Product)
logₐ(xy) = logₐx + logₐy
Log rule 2 (Quotient)
logₐ(x/y) = logₐx − logₐy
Log rule 3 (Power)
logₐ(x^n) = n × logₐx