3. CNS 4 Inhibition in the Brain

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/11

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

12 Terms

1
New cards

What is GABA & how is it synthesized?

  • Most abundant inhibitory neurotransmitter in the brain

  • Synthesized from glutamate via glutamic acid decarboxylase (GAD)

  • Neurones that synthesise GABA are called inhibitory GABAergic neurones

  • Acts at inhibitory synapses to suppress neuronal activity

<ul><li><p class="">Most abundant inhibitory neurotransmitter in the brain</p></li><li><p class="">Synthesized from glutamate via glutamic acid decarboxylase (GAD)</p></li><li><p class="">Neurones that synthesise GABA are called inhibitory GABAergic neurones</p></li><li><p class="">Acts at inhibitory synapses to suppress neuronal activity</p></li></ul><p></p>
2
New cards

What are the two main types of inhibitory GABAergic neurones in the brain?

  • Interneurones

    • Innervate nearby neurones (excitatory pyramidal or other inhibitory interneurones)

    • Control activity of large groups of neurones via widespread synapses

    • Mediate strong synchronisation of activity

    • ~20 different types with varied morphology & brain location

  • Projection neurones

    • Innervate neurones outside their region (e.g. medium spiny neurones of striatum)

<ul><li><p class=""><strong>Interneurones</strong></p><ul><li><p class="">Innervate nearby neurones (excitatory pyramidal or other inhibitory interneurones)</p></li><li><p class="">Control activity of large groups of neurones via widespread synapses</p></li><li><p class="">Mediate strong synchronisation of activity</p></li><li><p class="">~20 different types with varied morphology &amp; brain location</p></li></ul></li><li><p class=""><strong>Projection neurones</strong></p><ul><li><p class="">Innervate neurones outside their region (e.g. medium spiny neurones of striatum)</p></li></ul></li></ul><p></p>
3
New cards

How does GABA cause inhibition at the synapse?

  • GABA is stored in vesicles in presynaptic terminal

  • AP arrival → vesicle fusion with membrane → GABA released into synaptic cleft

  • GABA binds to GABA receptors (Cl⁻ channels) on postsynaptic membrane

  • Cl⁻ flows into cell (high [Cl⁻] outside → low [Cl⁻] inside)

  • Influx of negatively charged Cl⁻ → membrane becomes more negative (hyperpolarisation)

  • This is called an inhibitory postsynaptic potential (IPSP)

  • Hyperpolarisation ↓ probability of excitation by making it harder to reach threshold

  • If excitatory & inhibitory inputs occur together, they may cancel out → no net change

<ul><li><p class="">GABA is stored in vesicles in presynaptic terminal</p></li><li><p class="">AP arrival → vesicle fusion with membrane → GABA released into synaptic cleft</p></li><li><p class="">GABA binds to GABA receptors (Cl⁻ channels) on postsynaptic membrane</p></li><li><p class="">Cl⁻ flows into cell (high [Cl⁻] outside → low [Cl⁻] inside)</p></li><li><p class="">Influx of negatively charged Cl⁻ → membrane becomes more negative (hyperpolarisation)</p></li><li><p class="">This is called an inhibitory postsynaptic potential (IPSP)</p></li><li><p class="">Hyperpolarisation ↓ probability of excitation by making it harder to reach threshold</p></li><li><p class="">If excitatory &amp; inhibitory inputs occur together, they may cancel out → no net change</p></li></ul><p></p>
4
New cards

How are IPSPs recorded & what does bicuculline show?

  • Presynaptic GABAergic neurone fires APs → causes IPSPs in postsynaptic neurone

  • IPSPs = small transient hyperpolarisations

  • Bicuculline (GABAA antagonist) blocks fast IPSPs

  • Blocking GABAA​ reveals slower GABAB-mediated inhibition

<ul><li><p class="">Presynaptic GABAergic neurone fires APs → causes IPSPs in postsynaptic neurone</p></li><li><p class="">IPSPs = small transient hyperpolarisations</p></li><li><p class="">Bicuculline (GABA<sub>A </sub>antagonist) blocks fast IPSPs</p></li><li><p class="">Blocking GABA<sub>A​ </sub>reveals slower GABA<sub>B</sub>-mediated inhibition</p></li></ul><p></p>
5
New cards

How does KCC2 maintain GABAergic inhibition in the brain?

  • KCC2 pumps Cl⁻ out of the cell, maintaining low intracellular Cl⁻

  • This creates a Cl⁻ gradient that allows Cl⁻ to enter via GABAA receptors

  • Cl⁻ influx causes hyperpolarisation = inhibition

  • Without KCC2, Cl⁻ builds up = ↓ inhibition = risk of seizures & death

<ul><li><p class="">KCC2 pumps Cl⁻ out of the cell, maintaining low intracellular Cl⁻</p></li><li><p class="">This creates a Cl⁻ gradient that allows Cl⁻ to enter via GABA<sub>A</sub> receptors</p></li><li><p class="">Cl⁻ influx causes hyperpolarisation = inhibition</p></li><li><p class="">Without KCC2, Cl⁻ builds up = ↓ inhibition = risk of seizures &amp; death</p></li></ul><p></p>
6
New cards

What are the two types of GABA receptors & how do they function?

  • Ionotropic GABA receptors:

    • Ligand-gated ion channels

    • GABA binding opens channel → ion influx (e.g. Cl⁻)

  • Metabotropic GABA receptors:

    • G-protein coupled receptors

    • GABA binding → activates G-proteins & intracellular signalling (= longer-lasting inhibition of postsynaptic neurones

  • Both types can be presynaptic or postsynaptic

<ul><li><p class=""><strong>Ionotropic GABA receptors</strong>:</p><ul><li><p class="">Ligand-gated ion channels</p></li><li><p class="">GABA binding opens channel → ion influx (e.g. Cl⁻)</p></li></ul></li><li><p class=""><strong>Metabotropic GABA receptors</strong>:</p><ul><li><p class="">G-protein coupled receptors</p></li><li><p class="">GABA binding → activates G-proteins &amp; intracellular signalling (= longer-lasting inhibition of postsynaptic neurones</p></li></ul></li><li><p class="">Both types can be <strong>presynaptic</strong> or <strong>postsynaptic</strong></p></li></ul><p></p>
7
New cards

What are the main types & functions of ionotropic GABA receptors?

  • GABAA receptors: found in CNS

  • GABAC receptors: found in retina

  • Mediate Cl⁻ influx (minor HCO₃⁻ outflow)

  • Cause membrane hyperpolarisation = inhibition of EPSPs

  • GABAA agonists/allosteric modulators ↓ seizures & GABAA antagonists ↑ seizures

8
New cards

What are key features of GABAA receptors?

  • Expressed in all brain neurons

  • Involved in anxiety, epilepsy, panic disorders & insomnia

  • Targeted by benzodiazepines, barbiturates, anaesthetics & alcohol

  • Modulated by stress hormones & neurosteroids

  • Pentameric ligand-gated ion channels

9
New cards
  • Pentameric: 2 α, 2 β, 1 γ/δ/ε/π/θ subunit

  • GABA binds at α-β interface

  • Benzodiazepines bind at α-γ interface

  • Barbiturates bind intracellularly

  • Subunit composition affects:

    • GABA affinity

    • Channel properties

    • Drug sensitivity

    • Cell type-specific expression

    • Subcellular localisation (e.g., γ needed for synaptic, δ for extrasynaptic → tonic inhibition)

<ul><li><p class="">Pentameric: 2 α, 2 β, 1 γ/δ/ε/π/θ subunit</p></li><li><p class="">GABA binds at α-β interface</p></li><li><p class="">Benzodiazepines bind at α-γ interface</p></li><li><p class="">Barbiturates bind intracellularly</p></li><li><p class="">Subunit composition affects:</p><ul><li><p class="">GABA affinity</p></li><li><p class="">Channel properties</p></li><li><p class="">Drug sensitivity</p></li><li><p class="">Cell type-specific expression</p></li><li><p class="">Subcellular localisation (e.g., γ needed for synaptic, δ for extrasynaptic → tonic inhibition)</p></li></ul></li></ul><p></p>
10
New cards

How do GABAᵦ receptors function & what are their effects?

  • GABAᵦ receptors are metabotropic, G-protein coupled (R1 & R2 subunits)

  • Agonist = baclofen

  • Gαᵢ/ₒ subunit = inhibits adenylyl cyclase = ↓ protein kinase A (PKA) activation

  • PKA = enzyme that phosphorylates proteins to regulate cell activity

  • β & γ subunits:

    • Activate K⁺ channels = hyperpolarisation

    • Inhibit Ca²⁺ channels = ↓ neurotransmitter release

<ul><li><p class="">GABAᵦ receptors are metabotropic, G-protein coupled (R1 &amp; R2 subunits)</p></li><li><p class="">Agonist = baclofen</p></li><li><p class="">Gαᵢ/ₒ subunit = inhibits adenylyl cyclase = ↓ protein kinase A (PKA) activation</p></li><li><p class="">PKA = enzyme that phosphorylates proteins to regulate cell activity</p></li><li><p class="">β &amp; γ subunits:</p><ul><li><p class="">Activate K⁺ channels = hyperpolarisation</p></li><li><p class="">Inhibit Ca²⁺ channels = ↓ neurotransmitter release</p></li></ul></li></ul><p></p>
11
New cards
<p>What does the diagram show about GABAᴮ receptor localisation &amp; function at synapses?</p>

What does the diagram show about GABAᴮ receptor localisation & function at synapses?

  • GABAᴮ receptors act at both pre- & postsynaptic sites, with different effects depending on location & cell type

  • Presynaptic (autoreceptor) on GABAergic terminal:

    • Activated by GABA it releases itself

    • Inhibits Cav2 Ca²⁺ channels = ↓ Ca²⁺ influx = ↓ GABA release

  • Presynaptic (heteroreceptor) on glutamatergic terminal:

    • Activated by GABA from nearby GABAergic terminal

    • Inhibits Cav2 channels = ↓ Ca²⁺ influx = ↓ glutamate release

  • Postsynaptic (on dendritic shaft/spine):

    • Activates Kir3 K⁺ channels = K⁺ efflux = hyperpolarisation

    • Produces a slow IPSP

  • Also: Gαᵢ/o inhibits adenylyl cyclase = ↓ cAMP = ↓ PKA activation

  • Astrocytes (GAT1 & GAT3) remove excess GABA

  • Net effect depends on receptor location (pre/post) & cell type (GABAergic/glutamatergic)

<ul><li><p class="">GABAᴮ receptors act at both <strong>pre- &amp; postsynaptic sites</strong>, with different effects depending on location &amp; cell type</p></li><li><p class=""><strong>Presynaptic (autoreceptor) on GABAergic terminal:</strong></p><ul><li><p class="">Activated by GABA it releases itself</p></li><li><p class="">Inhibits Cav2 Ca²⁺ channels = ↓ Ca²⁺ influx = ↓ GABA release</p></li></ul></li><li><p class=""><strong>Presynaptic (heteroreceptor) on glutamatergic terminal:</strong></p><ul><li><p class="">Activated by GABA from nearby GABAergic terminal</p></li><li><p class="">Inhibits Cav2 channels = ↓ Ca²⁺ influx = ↓ glutamate release</p></li></ul></li><li><p class=""><strong>Postsynaptic (on dendritic shaft/spine):</strong></p><ul><li><p class="">Activates Kir3 K⁺ channels = K⁺ efflux = hyperpolarisation</p></li><li><p class="">Produces a <strong>slow IPSP</strong></p></li></ul></li><li><p class="">Also: Gαᵢ/o inhibits adenylyl cyclase = ↓ cAMP = ↓ PKA activation</p></li><li><p class=""><strong>Astrocytes (GAT1 &amp; GAT3)</strong> remove excess GABA</p></li><li><p class="">Net effect depends on <strong>receptor location (pre/post)</strong> &amp; <strong>cell type (GABAergic/glutamatergic)</strong></p></li></ul><p></p>
12
New cards

What are the key features of glycine as an inhibitory neurotransmitter?

  • Main inhibitory neurotransmitter in spinal cord & brainstem

  • Glycine = simple amino acid

  • Glycine receptors (GlyRs) = ligand-gated Cl⁻ channels with α & β subunits

  • Activation = Cl⁻ influx = hyperpolarisation of postsynaptic membrane = ↓ neuronal firing

  • Blocked by strychnine (competitive antagonist) = overexcitation: pain, cramps, startle response

  • Also mediates inhibition in retina via glycinergic amacrine cells

<ul><li><p class="">Main inhibitory neurotransmitter in spinal cord &amp; brainstem</p></li><li><p class="">Glycine = simple amino acid</p></li><li><p class="">Glycine receptors (GlyRs) = ligand-gated Cl⁻ channels with α &amp; β subunits</p></li><li><p class="">Activation = Cl⁻ influx = hyperpolarisation of postsynaptic membrane = ↓ neuronal firing</p></li><li><p class="">Blocked by strychnine (competitive antagonist) = overexcitation: pain, cramps, startle response</p></li><li><p class="">Also mediates inhibition in retina via glycinergic amacrine cells</p></li></ul><p></p>