1/28
Vocabulary-style flashcards covering negative-angle identities, co-function relationships, fundamental identities, and reciprocal definitions.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
cos(-θ)
Cosine is even; cos(-θ) = cos θ.
sec(-θ)
Secant is even; sec(-θ) = sec θ.
sin(-θ)
Sine is odd; sin(-θ) = -sin θ.
csc(-θ)
Cosecant is odd; csc(-θ) = -csc θ.
tan(-θ)
Tangent is odd; tan(-θ) = -tan θ.
cot(-θ)
Cotangent is odd; cot(-θ) = -cot θ.
cos(90° − θ)
Cosine of a complementary angle equals sine: cos(90°−θ) = sin θ.
sec(90° − θ)
Secant of a complementary angle equals cosecant: sec(90°−θ) = csc θ.
sin(90° − θ)
Sine of a complementary angle equals cosine: sin(90°−θ) = cos θ.
csc(90° − θ)
Cosecant of a complementary angle equals secant: csc(90°−θ) = sec θ.
tan(90° − θ)
Tangent of a complementary angle equals cotangent: tan(90°−θ) = cot θ.
cot(90° − θ)
Cotangent of a complementary angle equals tangent: cot(90°−θ) = tan θ.
cos(π/2 − θ)
Cosine of a complementary angle (radians) equals sine: cos(π/2−θ) = sin θ.
sec(π/2 − θ)
Secant of a complementary angle equals cosecant: sec(π/2−θ) = csc θ.
sin(π/2 − θ)
Sine of a complementary angle equals cosine: sin(π/2−θ) = cos θ.
csc(π/2 − θ)
Cosecant of a complementary angle equals secant: csc(π/2−θ) = sec θ.
tan(π/2 − θ)
Tangent of a complementary angle equals cotangent: tan(π/2−θ) = cot θ.
cot(π/2 − θ)
Cotangent of a complementary angle equals tangent: cot(π/2−θ) = tan θ.
tan θ = sin θ / cos θ
Tangent equals sine divided by cosine.
cot θ = cos θ / sin θ
Cotangent equals cosine divided by sine.
sin^2 θ + cos^2 θ = 1
Pythagorean identity: sine squared plus cosine squared equals 1.
1 + tan^2 θ = sec^2 θ
Pythagorean identity relating tan and sec.
1 + cot^2 θ = csc^2 θ
Pythagorean identity relating cot and csc.
csc θ = 1 / sin θ
Cosecant equals reciprocal of sine.
sec θ = 1 / cos θ
Secant equals reciprocal of cosine.
cot θ = 1 / tan θ
Cotangent equals reciprocal of tangent.
sin θ = 1 / csc θ
Sine equals reciprocal of cosecant.
cos θ = 1 / sec θ
Cosine equals reciprocal of secant.
tan θ = 1 / cot θ
Tangent equals reciprocal of cotangent.