1/49
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
tan x =
sin x / cos x
cot x =
cos x / sin x
sec x =
1 / cos x
csc x =
1/ sin x
sin2 x + cos2 x =
1
sec2 x - tan2 x =
1
2((sin x)(cos x)) =
sin 2x
cos2 x - sin2 x
cos 2x
sin (-x) =
-sin x
cos (-x) =
cos x
tan (-x) =
-tan (x)
sin (A+B) =
(sin A)(cos B) + (sin B)(cos A)
sin (A-B) =
(sin A)(cos B) - (sin B)(cos A)
cos (A+B) =
(cos A)(cos B)-(sin A)(sin B)
cos (A-B) =
(cos A)(cos B) + (sin A)(sin B)
Distance between two points
Square root of (X2-X1)2+(Y2-Y1)2
Midpoint Formula
(X1 + X2 / 2, Y1+Y2 / 2)
ln (ab) =
ln (a) + ln (b)
ln (a/b)
ln (a) - ln (b)
ln (an) =
n (ln (a))
ln (1/a)
-ln (a)
lim f(x) x→a- =
L (from the left)
lim f(x) x→a+ =
L (from the right)
Definition of a limit: lim f(x) x→a = L
iff lim f(x) x→a- = L = lim f(x) x→a+
lim x→a (f±g) =
lim x→a (f) ± lim x→a (g)
lim x→a (f*g)=
lim x→a f * lim x→a g
lim x→a c =
c
lim x→a (c*f) =
c * lim x→a f
lim x→a f/g =
lim x→a f / lim x→a g, lim x→a (g) ≠ 0
lim x→a f(g(x)) =
f [lim x→a (g(x))]
Definition of a Vertical Asymptote
lim x→a- f(x)= ±∞ OR lim x→a+ f(x)= ±∞
Definition of Horizontal Asymptote
lim x→-∞ f(x) = a OR lim x→∞ f(x) = a
Order Growth
lnd a < xc < xc lnda < xc+d < ax < x! < xx
if f grows faster than g, then
lim x→∞ g(x)/f(x) = 0 AND lim x→∞ f(x)/g(x) = ∞
A function f is continuous at x=a iff
1) f(a) exists
2) lim x→a f(x) exists
3) lim x→a f(x) = f(a)
IVT if…
1) f is continuous on the closed interval [a,b]
2) f(a) ≠ f(b)
3) k is between f(a) and f(b)
Then there exists a number c
between a and b for which f (c) = k
Squeeze Theorem
If f(x)≤g(x)≤h(x) and as x→a, f(x)→L and h(x)→L, then g(x)→L
lim x→-∞ ex =
0
lim x→∞ ex =
∞
lim x→0+ ln(x) =
-∞
lim x→∞ ln(x) =
∞
lim x→0 ex-1/x=
1
lim x→0 sin x/ x =
1
lim x→0 1-cosx/x =
0
lim x→±∞ (1+c/x)x =
ec
lim x→0+ (1+cx)1/x =
ec
lim x→-∞ arctan x =
-𝜋/2
lim x→∞ arctan x =
𝜋/2
lim x→-∞ 1/x =
0
lim x→∞ 1/x =
0