1/22
A set of flashcards covering key trigonometric and function vocabulary from Unit 3 of the AP Exam Prep Reference Sheet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Periodic Functions
Functions that demonstrate a repeating pattern as input values increase.
Amplitude
Half the difference between the maximum and minimum values of a sinusoidal function.
Midline
A horizontal line halfway between the maximum and minimum values of a sinusoidal function.
Sine Function
Gives the vertical displacement from the x-axis.
Cosine Function
Gives the horizontal displacement from the y-axis.
Frequency
The reciprocal of the period of a function.
Phase Shift
A horizontal translation of a sinusoidal function.
Transformations
Changes applied to functions including vertical and horizontal shifts, dilations, and translations.
Cotangent
The reciprocal of the tangent function.
Cosecant
The reciprocal of the sine function.
Secant
The reciprocal of the cosine function.
Inverse Trigonometric Functions
Functions that reverse the effect of the original trigonometric functions.
Polar Coordinates
Coordinates based on a radius and angle measuring the position in a polar system.
Sinusoidal Regression
A method to model sinusoidal functions for a given data set.
Pythagorean Identities
Trigonometric identities based on the Pythagorean theorem.
Parameter
An individual variable in a function that defines a particular case of the function.
Rectangular to Polar
The conversion of coordinates from rectangular format to polar format.
Radial Symmetry
A characteristic of polar graphs where the graph looks the same when rotated by certain angles.
Pythagorean Identities
\sin^2(\theta) + \cos^2(\theta) = 1, 1 + \tan^2(\theta) = \sec^2(\theta), and 1 + \cot^2(\theta) = \csc^2(\theta).
Sum Identities for Sine and Cosine
\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) and \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta).
Difference Identities for Sine and Cosine
\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta) and \cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta).
Double Angle Identity for Sine
\sin(2\theta) = 2\sin(\theta)\cos(\theta).
Double Angle Identities for Cosine
\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta), \cos(2\theta) = 2\cos^2(\theta) - 1, and \cos(2\theta) = 1 - 2\sin^2(\theta)