Basic Integration Rules, Pythagorean Identities, and some more

0.0(0)
studied byStudied by 6 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/34

flashcard set

Earn XP

Description and Tags

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

35 Terms

1
New cards
term image

<p></p>
2
New cards
term image
knowt flashcard image
3
New cards
term image
knowt flashcard image
4
New cards
term image
knowt flashcard image
5
New cards
term image

ln|u| + C

<p>ln|u| + C </p>
6
New cards
term image

e^u + C

<p>e^u + C</p>
7
New cards
term image

(1/ln|a|)a^u + C

<p>(1/ln|a|)a^u + C</p>
8
New cards
term image

-cos(u) + C

<p>-cos(u) + C</p>
9
New cards
term image

sin(u) + C

<p>sin(u) + C</p>
10
New cards
term image

-ln|cos(u)| + C

<p>-ln|cos(u)| + C</p>
11
New cards
term image

ln|sin(u)| + C

<p>ln|sin(u)| + C</p>
12
New cards
term image

ln|sec(u)+tan(u)| + C

<p>ln|sec(u)+tan(u)| + C</p>
13
New cards
term image

-ln|csc(u)+cot(u)| + C

<p>-ln|csc(u)+cot(u)| + C</p>
14
New cards
term image

tan(u) + C

<p>tan(u) + C</p>
15
New cards
term image

-cot(u) + C

<p>-cot(u) + C</p>
16
New cards
term image

sec(u) + C

<p>sec(u) + C</p>
17
New cards
term image

-csc(u) + C

<p>-csc(u) + C</p>
18
New cards
term image

arcsin(u/a) + C

<p>arcsin(u/a) + C</p>
19
New cards
term image

(1/a)arctan(u/a) + C

<p>(1/a)arctan(u/a) + C</p>
20
New cards
term image

(1/a)arcsec(|u|/a) + C

<p>(1/a)arcsec(|u|/a) + C</p>
21
New cards
term image

1

<p>1</p>
22
New cards
term image

sec²(theta)

<p>sec²(theta)</p>
23
New cards
term image

csc²(theta)

<p>csc²(theta)</p>
24
New cards

sin(2x) =

2sin(x)cos(x)

25
New cards

cos(2x) =

cos²(x)-sin²(x)

26
New cards

cos²(x) =

1/2(1+cos(2x))

27
New cards

sin²(x) =

1/2(1-cos(2x))

28
New cards

Integration by Part formula

∫udv = uv-∫vdu

29
New cards

∫sin³(x)dx =

∫sin²(x)sin(x)dx = ∫(1-cos²(x))sin(x)dx

30
New cards

∫sin²(2x)cos²(2x)dx

∫(1/2(1-cos(4x))*(1/2(1+cos(4x))dx

31
New cards

∫sec⁴(3x)tan(3x)dx =

∫sec²(3x)sec²(3x)tan(3x)dx = ∫(1+tan²(3x)tan(3x)sec²(3x)dx

32
New cards

a³-b³ =

(a-b)(a²+ab+b²)

33
New cards

a³+b³ =

(a+b)(a²-ab+b²)

34
New cards

Complete the square
x²+10x+5 = 0

x²+10x+(b/2)² = -5+(b/2)²
x²+10x+25 = -5+25
(x+5)² = 20

35
New cards

∫xln(x)dx

(1/2)x²ln(x)-(1/4)x²+C