1/57
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Pythagorean Identity (sin and cos)
sin²x + cos²x = 1
Pythagorean Identity (sec and tan)
sec²x - tan²x = 1
Reciprocal Identity for secant
sec x = 1 / cos x
Reciprocal Identity for cosecant
csc x = 1 / sin x
Double Angle Formula for sine
sin 2x = 2 sin x cos x
Double Angle Formula for cosine
cos 2x = cos²x - sin²x
Sum Formula for Sine
sin(A + B) = sin A cos B + cos A sin B
Difference Formula for Sine
sin(A - B) = sin A cos B - cos A sin B
Sum Formula for Cosine
cos(A + B) = cos A cos B - sin A sin B
Difference Formula for Cosine
cos(A - B) = cos A cos B + sin A sin B
Definition of a Limit
lim(x→a) f(x) = L if lim(x→a⁻) f(x) = L and lim(x→a⁺) f(x) = L.
One-Sided Limit from the left
lim(x→a⁻) f(x) = L (approaching from the left).
One-Sided Limit from the right
lim(x→a⁺) f(x) = L (approaching from the right).
Limit Law for sum
lim(x→a) [f(x) ± g(x)] = lim(x→a) f(x) ± lim(x→a) g(x).
Limit Law for constant multiplication
lim(x→a) [c⋅f(x)] = c⋅lim(x→a) f(x).
Definition of Vertical Asymptote
x = a is a vertical asymptote if lim(x→a⁻) f(x) = ±∞ or lim(x→a⁺) f(x) = ±∞.
Definition of Horizontal Asymptote
y = L is a horizontal asymptote if lim(x→±∞) f(x) = L.
Squeeze Theorem
If f(x) ≤ g(x) ≤ h(x) and lim(x→a) f(x) = lim(x→a) h(x) = L, then lim(x→a) g(x) = L.
Definition of the Derivative
f'(x) = lim(h→0) (f(x+h) - f(x)) / h.
Power Rule for Derivatives
d/dx [xⁿ] = n xⁿ⁻¹.
Product Rule for Derivatives
d/dx [f(x)g(x)] = f'(x) g(x) + f(x) g'(x).
Quotient Rule for Derivatives
d/dx [f(x) / g(x)] = (f'(x) g(x) - f(x) g'(x)) / g²(x).
Chain Rule for Derivatives
d/dx f(g(x)) = f'(g(x)) ⋅ g'(x).
Derivative of sin x
d/dx [sin x] = cos x.
Derivative of cos x
d/dx [cos x] = -sin x.
Derivative of tan x
d/dx [tan x] = sec²x.
Derivative of arcsin x
d/dx [arcsin x] = 1 / √(1 - x²).
Derivative of arctan x
d/dx [arctan x] = 1 / (1 + x²).
Derivative of arcsec x
d/dx [arcsec x] = 1 / |x|√(x² - 1).
Derivative of e^x
d/dx [e^x] = e^x.
Derivative of ln x
d/dx [ln x] = 1 / x.
Derivative of a^x
d/dx [a^x] = ln(a) ⋅ a^x.
L'Hôpital’s Rule
If lim(x→a) f(x)/g(x) is in an indeterminate form (0/0 or ∞/∞), then: lim(x→a) f(x)/g(x) = lim(x→a) f'(x)/g'(x).
First Derivative Test
If f'(x) changes from + to -, f(c) is a local max; if it changes from - to +, f(c) is a local min.
Second Derivative Test for local minima
If f''(c) > 0, f(c) is a local min.
Second Derivative Test for local maxima
If f''(c) < 0, f(c) is a local max.
Test for Concavity
If f''(x) > 0, f(x) is concave up; if f''(x) < 0, f(x) is concave down.
Point of Inflection
A point where f''(x) changes sign.
Mean Value Theorem
If f(x) is continuous on [a, b] and differentiable on (a, b), then there exists c in (a, b) such that: f'(c) = (f(b) - f(a)) / (b - a).
Fundamental Theorem of Calculus (Part 1)
∫[a,b] f(x)dx = F(b) - F(a), where F is an antiderivative of f.
Fundamental Theorem of Calculus (Part 2)
d/dx ∫[c,x] f(t) dt = f(x).
Integral of xⁿ
∫ xⁿ dx = (xⁿ⁺¹) / (n+1) + C, for n ≠ -1.
Integral of e^x
∫ e^x dx = e^x + C.
Integral of 1/x
∫ (1/x) dx = ln|x| + C.
Integral of sin x
∫ sin x dx = -cos x + C.
Integral of cos x
∫ cos x dx = sin x + C.
Integral of sec²x
∫ sec²x dx = tan x + C.
Position function in motion
s(t) = position.
Velocity function in motion
v(t) = s'(t) = velocity.
Acceleration function in motion
a(t) = v'(t) = s''(t) = acceleration.
Total Distance Traveled
∫[a,b] |v(t)| dt.
Volume of Solid (Disk Method)
V = π ∫[a,b] [R(x)]² dx.
Volume of Solid (Washer Method)
V = π ∫[a,b] (R²(x) - r²(x)) dx.
Volume of Solid (Cross-Sectional Area)
V = ∫[a,b] A(x) dx.
LRAM (Left Riemann Sum)
Uses left endpoints of subintervals for f(x).
RRAM (Right Riemann Sum)
Uses right endpoints of subintervals for f(x).
MRAM (Midpoint Riemann Sum)
Uses midpoints of subintervals for f(x).
Trapezoidal Rule
Approximates area using trapezoids: A ≈ (Δx / 2) [f(x₀) + 2f(x₁) + 2f(x₂) + ... + f(xₙ)].