2.Mitosis - Meiosis & Genetics

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/20

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

21 Terms

1
New cards

Mitosis vs. Meiosis

🧠 Flashcard Questions Mitosis

  • Q: What is the main purpose of mitosis?
    A: Growth and repair

  • Q: How many daughter cells are produced in mitosis?
    A: 2

  • Q: Are the daughter cells in mitosis diploid or haploid?
    A: Diploid (2n)

  • Q: Are mitotic daughter cells genetically identical or different?
    A: Identical

Meiosis

  • Q: What is the purpose of meiosis?
    A: To produce gametes for reproduction

  • Q: How many divisions occur in meiosis?
    A: Two

  • Q: How many daughter cells result from meiosis?
    A: Four

  • Q: Are the daughter cells in meiosis haploid or diploid?
    A: Haploid (n)

  • Q: Are meiotic daughter cells genetically identical?
    A: No, they are genetically different

📊 Mitosis vs. Meiosis – Table Summary

Feature

Mitosis

Meiosis

Purpose

Growth and repair

Reproduction (gamete formation)

# of Divisions

1

2

# of Daughter Cells

2

4

Chromosome Count in Daughter Cells

Diploid (2n) – same as parent

Haploid (n) – half of the parent

Genetic Identity

Identical to the parent

Genetically different

Occurs In

All somatic (body) cells

Sex cells only (sperm, egg)

Starting Cell

Diploid (2n)

Diploid (2n): Primary spermatocyte or oocyte

Used For

Tissue repair, growth, and asexual reproduction

Sexual reproduction

2
New cards

Mitosis & Meiosis ProPhase (Pro=Pre=Before)

Mitosis Phases

TEAS may test names & order: Prophase, Metaphase, Anaphase, Telophase (PMAT)

Meiosis Phases

Meiosis has two rounds of PMAT: Meiosis I and Meiosis II, each with PMAT steps

🔄 Flow of Cell Division Stages

Mitosis (1 round – for body cells):

P → M → A → T → 2 identical diploid cells

Begins at Prophase

What’s happened? (Refer to Graph):

Mitosis Prophase Phases

Chromosomes become visible as they condense and thicken

Meiosis (2 rounds – for sex cells):

P1 → M1 → A1 → T1 → 2 haploid cells
then
P2 → M2 → A2 → T2 → 4 genetically different haploid cells

Begins at Prophase 1

What’s happened? (Refer to Graph):

Meiosis Prophase Phases 1

Chromosomes’ condensation and pairing of homologous chromosomes. Where crossover occurs.

homologous

同源染色体(细胞生物学):指在细胞中,一条来自父亲,一条来自母亲,具有相同基因序列和位置的染色体对

<table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1"><p><strong>Mitosis Phases</strong></p></td><td colspan="1" rowspan="1"><p>TEAS may test names &amp; order: <strong>Prophase, Metaphase, Anaphase, Telophase</strong> (PMAT)</p></td></tr></tbody></table><table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1"><p><strong>Meiosis Phases</strong></p></td><td colspan="1" rowspan="1"><p>Meiosis has two rounds of PMAT: <strong>Meiosis I</strong> and <strong>Meiosis II</strong>, each with PMAT steps</p></td></tr></tbody></table><p></p><p><span data-name="arrows_counterclockwise" data-type="emoji">🔄</span> <strong>Flow of Cell Division Stages</strong></p><p><span style="color: red"><strong>Mitosis</strong> (1 round – for body cells):</span></p><p><strong>P → M → A → T → 2 identical diploid cells</strong></p><p>Begins at Prophase</p><p><strong>What’s happened? (Refer to Graph):</strong></p><p></p><table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1"><p><strong>Mitosis Prophase Phases</strong></p></td><td colspan="1" rowspan="1"><p><span style="color: red"><strong>Chromosomes become visible as they condense and thicken</strong></span></p></td></tr></tbody></table><p></p><p><span style="color: red"><strong>Meiosis</strong> (2 rounds – for sex cells):</span></p><p><strong>P1 → M1 → A1 → T1</strong> → 2 haploid cells<br>then<br><strong>P2 → M2 → A2 → T2</strong> → 4 genetically different haploid cells</p><p>Begins at Prophase 1</p><p><strong>What’s happened? (Refer to Graph):</strong></p><table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1"><p><strong>Meiosis Prophase Phases 1</strong></p></td><td colspan="1" rowspan="1"><p><span style="color: red"><strong>Chromosomes’ condensation and pairing of homologous chromosomes. Where crossover occurs.</strong></span></p></td></tr></tbody></table><p></p><p>homologous</p><p><strong>同源染色体(细胞生物学)</strong>:指在细胞中,一条来自父亲,一条来自母亲,具有相同基因序列和位置的染色体对</p><p></p>
3
New cards

Mitosis & Meiosis MetaPhase (M=Middle)

Mitosis MetaPhase

Chromosomes align in the middle of the cell’s center, forming a single row.

Meiosis Metaphase 1

Chromosomes align in the middle of the cell’s center and maintain their homologous pairs.

<table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1"><p><strong>Mitosis MetaPhase</strong></p></td><td colspan="1" rowspan="1"><p><span style="color: red"><strong>Chromosomes align in the middle of the cell’s center, forming a single row.</strong></span></p></td></tr></tbody></table><table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1"><p><strong>Meiosis Metaphase 1</strong></p></td><td colspan="1" rowspan="1"><p><span style="color: red"><strong>Chromosomes align in the middle of the cell’s center and maintain their homologous pairs.</strong></span></p></td></tr></tbody></table><p></p>
4
New cards

Mitosis & Meiosis AnaPhase (A=Away)

Mitosis AnaPhase

Chromatids are separated and drawn to the opposite ends of the cell by spindle fibers

Meiosis Anaphase 1

Chromosomes are separated and drawn to the opposite ends of the cell by spindle fibers.

#Allows random assortment of chromosomes, contributing to genetic diversity among offspring.

Chromatids = 🧬 What Are Chromatids? Definition:

A chromatid is one-half of a duplicated chromosome.

When a chromosome is copied (during interphase), it forms two identical sister chromatids, joined at a point called the centromere.


📘 Simple Breakdown:

Term

Description

Chromosome

A structure made of DNA and proteins that carries genetic info

Chromatid

One copy of a chromosome after it has been duplicated

Sister Chromatids

Two identical chromatids (joined at the centromere)

Centromere

The central part where two sister chromatids are attached

<table style="min-width: 133px"><colgroup><col style="width: 108px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1" colwidth="108"><p><strong>Mitosis AnaPhase</strong></p></td><td colspan="1" rowspan="1"><p><span style="color: red"><strong><em><u>Chromatids </u></em>are separated and drawn to the opposite ends of the cell by spindle fibers</strong></span></p></td></tr></tbody></table><table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1"><p><strong>Meiosis Anaphase 1</strong></p></td><td colspan="1" rowspan="1"><p><span style="color: red"><strong>Chromosomes are separated and drawn to the opposite ends of the cell by spindle fibers.</strong></span></p><p><span style="color: red">#Allows random assortment of chromosomes, contributing to genetic diversity among offspring.</span></p><p></p></td></tr></tbody></table><p><strong>Chromatids = </strong><span data-name="dna" data-type="emoji">🧬</span> <strong>What Are Chromatids?</strong> <span data-name="check_mark_button" data-type="emoji">✅</span> <strong>Definition:</strong></p><p>A <strong>chromatid</strong> is <strong>one-half of a duplicated chromosome</strong>.</p><p></p><p>When a chromosome is copied (during interphase), it forms <strong>two identical sister chromatids</strong>, joined at a point called the <strong>centromere</strong>.</p><p></p><div data-type="horizontalRule"><hr></div><p><span data-name="blue_book" data-type="emoji">📘</span> <strong>Simple Breakdown:</strong></p><table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><th colspan="1" rowspan="1"><p>Term</p></th><th colspan="1" rowspan="1"><p>Description</p></th></tr><tr><td colspan="1" rowspan="1"><p><strong>Chromosome</strong></p></td><td colspan="1" rowspan="1"><p>A structure made of DNA and proteins that carries genetic info</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Chromatid</strong></p></td><td colspan="1" rowspan="1"><p>One copy of a chromosome after it has been duplicated</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Sister Chromatids</strong></p></td><td colspan="1" rowspan="1"><p>Two identical chromatids (joined at the centromere)</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Centromere</strong></p></td><td colspan="1" rowspan="1"><p>The central part where two sister chromatids are attached</p></td></tr></tbody></table><p></p>
5
New cards

Mitosis & Meiosis TeloPhase

Mitosis TeloPhase

Chromosomes reach the opposite sides of the cell.

Forming new nuclear envelopes around the chromosomes.

Meiosis Telophase 1

Chromosomes reach the opposite sides of the cell.

Forming new nuclear envelopes around the chromosomes.

<table style="min-width: 133px"><colgroup><col style="width: 108px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1" colwidth="108"><p><strong>Mitosis TeloPhase</strong></p></td><td colspan="1" rowspan="1"><p><span style="color: red"><strong>Chromosomes reach the opposite sides of the cell.</strong></span></p><p><span style="color: red"><strong>Forming new nuclear envelopes around the chromosomes.</strong></span></p></td></tr></tbody></table><table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1"><p><strong>Meiosis Telophase 1</strong></p></td><td colspan="1" rowspan="1"><p><strong>Chromosomes reach the opposite sides of the cell.</strong></p><p><strong>Forming new nuclear envelopes around the chromosomes.</strong></p></td></tr></tbody></table><p></p>
6
New cards

Mitosis & Meiosis - Cytokinesis

Mitosis Cytokinesis

Split the cytoplasm of the cell

Two identical, diploid cells.

Meiosis Cytokinesis

Split the cytoplasm of the cell

<table style="min-width: 133px"><colgroup><col style="width: 108px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1" colwidth="108"><p><strong>Mitosis Cytokinesis</strong></p></td><td colspan="1" rowspan="1"><p>Split the cytoplasm of the cell</p><p>Two identical, diploid cells.</p></td></tr></tbody></table><table style="min-width: 141px"><colgroup><col style="width: 116px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1" colwidth="116"><p><strong>Meiosis Cytokinesis</strong></p></td><td colspan="1" rowspan="1"><p>Split the cytoplasm of the cell</p></td></tr></tbody></table><p></p>
7
New cards

Meiosis Round 2

Meiosis Prophase 2

Chromosome condensation in both cells

Meiosis

Metaphase 2

Chromosomes align in the center of the cell.

Forming a single row.

Meiosis

Anaphase 2

Chromatids are separated and drawn to the opposite ends of the cell by spindle fibers.

Meiosis

Teloohase 2

Chromosomes reach the opposite sides of the cell.

Forming new nuclear envelopes around the chromosomes.

Meiosis

Cytokinesis

Split the cytoplasm of the cell.

Four non-identical cells (Gametes)

8
New cards

Heredity

The passing on of physical or mental characteristics genetically from one generation to another.

9
New cards

DNA - Deoxyribonucleic Acid


Nucleotide

Self-replicating material that is present in nearly all living organisms as the main constituent of Chromosomes.

"Nucleotide" 的中文是核苷酸。核苷酸是核酸(如 DNA 和 RNA)的基本組成單位,它由一個含氮鹼基、一個五碳糖和一个或多个磷酸基团组成。

Component

Description

Role/Function

Double Helix Shape

Twisted ladder-like structure

Structure of DNA

Nucleotide

核苷酸

Building block of DNA

Makes up DNA strands

Phosphate

Circle part of nucleotide

Part of DNA backbone

Deoxyribose (A Sugar)

Pentagon-shaped sugar

Bonds phosphate and base (DNA backbone)

Nitrogenous Base

Rectangular structure

Contains genetic code

Code for Traits

Info carried by nitrogenous base

Determines genetic traits

<p>Self-replicating material that is present in nearly all living organisms as the main constituent of Chromosomes. </p><p></p><p>"Nucleotide" 的中文是<strong>核苷酸</strong><span>。核苷酸是核酸(如 DNA 和 RNA)的基本組成單位,它由一個含氮鹼基、一個五碳糖和一个或多个磷酸基团组成。</span></p><p></p><table style="min-width: 75px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><th colspan="1" rowspan="1"><p><strong>Component</strong></p></th><th colspan="1" rowspan="1"><p><strong>Description</strong></p></th><th colspan="1" rowspan="1"><p><strong>Role/Function</strong></p></th></tr><tr><td colspan="1" rowspan="1"><p>Double Helix Shape</p></td><td colspan="1" rowspan="1"><p>Twisted ladder-like structure</p></td><td colspan="1" rowspan="1"><p>Structure of DNA</p></td></tr><tr><td colspan="1" rowspan="1"><p>Nucleotide</p><p><strong>核苷酸</strong></p></td><td colspan="1" rowspan="1"><p>Building block of DNA</p></td><td colspan="1" rowspan="1"><p>Makes up DNA strands</p></td></tr><tr><td colspan="1" rowspan="1"><p>Phosphate</p></td><td colspan="1" rowspan="1"><p>Circle part of nucleotide</p></td><td colspan="1" rowspan="1"><p>Part of DNA backbone</p></td></tr><tr><td colspan="1" rowspan="1"><p>Deoxyribose (A Sugar)</p></td><td colspan="1" rowspan="1"><p>Pentagon-shaped sugar</p></td><td colspan="1" rowspan="1"><p>Bonds phosphate and base (DNA backbone)</p></td></tr><tr><td colspan="1" rowspan="1"><p>Nitrogenous Base</p></td><td colspan="1" rowspan="1"><p>Rectangular structure</p></td><td colspan="1" rowspan="1"><p>Contains genetic code</p></td></tr><tr><td colspan="1" rowspan="1"><p>Code for Traits</p></td><td colspan="1" rowspan="1"><p>Info carried by nitrogenous base</p></td><td colspan="1" rowspan="1"><p>Determines genetic traits</p></td></tr></tbody></table><p></p>
10
New cards

4 Kinds of Bases in DNA

Component

Explanation

Memory Aid

DNA (Deoxyribonucleic Acid)

Self-replicating genetic material found in all living organisms

-

Nucleotide Bases

The rungs of the DNA ladder, paired by hydrogen bonds

-

Adenine (A)

Pairs with Thymine (T)

Apple in the Tree

Thymine (T)

Pairs with Adenine (A)

Apple in the Tree

Cytosine (C)

Pairs with Guanine (G)

Car in the Garage

Guanine (G)

Pairs with Cytosine (C)

Car in the Garage

Hydrogen Bonds

Weak bonds that hold base pairs together

-

A - T

C - G

11
New cards

What is Gene?

The two types of Gene?

🔹 Flashcard-Style Questions:

1. Structural Genes

  • Q: What type of gene codes for traits like eye or hair color?

  • A: Structural genes.

  • Q: Name two functions of proteins coded by structural genes.

  • A: Enzymatic activity and defense mechanisms.

2. Regulatory Genes

  • Q: What is the role of regulatory genes?

  • A: To control the timing, location, and amount of gene expression.

  • Q: True or False: Regulatory genes can turn structural genes on or off.

  • A: True.

3. Protein and Gene Interaction

  • Q: Can proteins influence gene activity?

  • A: Yes, proteins can regulate genes or act as products of genes.

4. Gene Regulation

  • Q: What is gene regulation?

  • A: The control of gene expression in terms of timing, location, and quantity.

  • Q: What does gene regulation help an organism do?

  • A: Adapt and control development and cellular function.

A unit of Heredity which is transferred from a parent to offspring and is held to determine some characteristic of the offspring.

Category

Description

Examples/Functions

Structural Genes

Code for proteins that affect the physical traits and basic functions of the body

Eye/hair color, transport proteins, enzymes, immunity

Regulatory Genes

Control when, where, and how much structural genes are expressed

Gene regulation, activation/inactivation

Protein Function

Proteins are made from gene instructions and can also influence other gene functions

Enzymes, transporters, hormones, structural roles

Gene Regulation

The process that determines which genes get turned on or off

Controlled by r

🔹 Extra TEAS-Related Concepts Not in Image:

Concept

Explanation

Transcription

DNA is transcribed into mRNA

Translation

mRNA is translated into proteins at the ribosome

Mutations

Changes in DNA that can affect gene expression or protein function

Epigenetics

Gene expression changes that don’t involve changes to the DNA sequence

Homeobox (HOX) Genes

Regulatory genes that control body plan during embryonic development

Operons (Prokaryotic gene regulation)

Units of genes in bacteria regulated together (e.g., lac operon)

12
New cards

RNA - Ribonucleic Acid

A nucleic acid present in all living cells whose principal role is to act as a messenger carrying instructions from DNA for controlling the synthesis of protein.

Present is both in and outside of the nucleus.

Feature

RNA (Ribonucleic Acid)

Structure

Single-stranded

Sugar

Ribose (different from DNA's deoxyribose)

Base Pairing Rule

Adenine pairs with Uracil (instead of Thymine)

Base Names

Adenine (A), Uracil (U), Cytosine (C), Guanine (G)

Location

Present inside and outside the nucleus

Function

Messenger that carries DNA instructions for protein synthesis

Memory Tip

"Apple under the tree" = A → U

Pairing Tips:

Apple Under the tree

Car in the Garage

<p>A nucleic acid present in all living cells whose principal role is to act as a messenger carrying instructions from DNA for controlling the synthesis of protein.</p><p>Present is both in and outside of the nucleus.</p><p></p><table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><th colspan="1" rowspan="1"><p><strong>Feature</strong></p></th><th colspan="1" rowspan="1"><p><strong>RNA (Ribonucleic Acid)</strong></p></th></tr><tr><td colspan="1" rowspan="1"><p><strong>Structure</strong></p></td><td colspan="1" rowspan="1"><p>Single-stranded</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Sugar</strong></p></td><td colspan="1" rowspan="1"><p><strong>Ribose</strong> (different from DNA's deoxyribose)</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Base Pairing Rule</strong></p></td><td colspan="1" rowspan="1"><p><strong>Adenine pairs with Uracil</strong> (instead of Thymine)</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Base Names</strong></p></td><td colspan="1" rowspan="1"><p>Adenine (A), <strong>Uracil (U)</strong>, Cytosine (C), Guanine (G)</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Location</strong></p></td><td colspan="1" rowspan="1"><p>Present <strong>inside and outside</strong> the nucleus</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Function</strong></p></td><td colspan="1" rowspan="1"><p>Messenger that carries DNA instructions for <strong>protein synthesis</strong></p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Memory Tip</strong></p></td><td colspan="1" rowspan="1"><p><strong>"Apple under the tree" = A → U</strong></p></td></tr></tbody></table><p></p><p>Pairing Tips:</p><p><strong>A</strong>pple <strong>U</strong>nder the tree</p><p><strong>C</strong>ar in the <strong>G</strong>arage</p><p></p>
13
New cards

3 Types of RNA

Type of RNA

Full Name

Function

Visual Cue from Image

mRNA

Messenger RNA

Carries genetic instructions from DNA( IN NUCLUES ) to the ribosome

Mail carrier

rRNA

Ribosomal RNA

Forms part of the ribosome, the site of protein synthesis

Ribosome base structure

tRNA

Transfer RNA

Transfers amino acids and matches them to mRNA codons

Adaptor decoding mRNA into protein

<table style="min-width: 175px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"><col style="width: 100px"><col style="min-width: 25px"></colgroup><tbody><tr><th colspan="1" rowspan="1"><p><strong>Type of RNA</strong></p></th><th colspan="1" rowspan="1"><p><strong>Full Name</strong></p></th><th colspan="1" rowspan="1" colwidth="100"><p><strong>Function</strong></p></th><th colspan="1" rowspan="1"><p><strong>Visual Cue from Image</strong></p></th></tr><tr><td colspan="1" rowspan="1"><p><strong>mRNA</strong></p></td><td colspan="1" rowspan="1"><p>Messenger RNA</p></td><td colspan="1" rowspan="1" colwidth="100"><p>Carries genetic instructions from DNA( <strong>IN NUCLUES</strong> ) to the ribosome</p></td><td colspan="1" rowspan="1"><p>Mail carrier</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>rRNA</strong></p></td><td colspan="1" rowspan="1"><p>Ribosomal RNA</p></td><td colspan="1" rowspan="1" colwidth="100"><p>Forms part of the <strong>ribosome</strong>, the site of protein synthesis</p></td><td colspan="1" rowspan="1"><p>Ribosome base structure</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>tRNA</strong></p></td><td colspan="1" rowspan="1"><p>Transfer RNA</p></td><td colspan="1" rowspan="1" colwidth="100"><p>Transfers amino acids and <strong>matches them to mRNA codons</strong></p></td><td colspan="1" rowspan="1"><p>Adaptor decoding mRNA into protein</p></td></tr></tbody></table><p></p>
14
New cards

Transcription vs Translation

🎓 Flashcard Questions

1. Transcription

  • Q: Where does transcription occur in the cell?

  • A: In the nucleus.

  • Q: What enzyme is responsible for transcription?

  • A: RNA polymerase.

  • Q: What is the result of transcription?

  • A: A strand of mRNA.

2. Translation

  • Q: What is the purpose of translation?

  • A: To build a protein from the sequence on mRNA.

  • Q: What molecule brings amino acids to the ribosome?

  • A: tRNA (transfer RNA).

  • Q: Where does translation take place?

  • A: At the ribosome in the cytoplasm.

3. Both Together

  • Q: What is the correct order of the processes?

  • A: Transcription → Translation.

  • Q: What does mRNA do in protein synthesis?

  • A: It carries the genetic code from DNA to the ribosome.

Transcription: DNA → mRNA

Translation: mRNA →(Using Ribosome) Protein

Step

Transcription

Translation

Definition

Making an RNA copy of a gene’s DNA sequence

Converting mRNA into a chain of amino acids (protein)

Location

Nucleus (in eukaryotes)

Ribosome (cytoplasm)

Main Molecule

RNA Polymerase

tRNA (transfer RNA) + Ribosome

Product

mRNA (messenger RNA)

Polypeptide (protein chain)

Memory Tip

“C comes before L” → Transcription comes before Translation

Translation happens after transcription

Concept

Details

Codons

3-letter mRNA sequences that code for amino acids

Start Codon

AUG — signals the start of translation

Stop Codons

UAA, UAG, UGA signal the end of translation

Mutation Effect

A DNA mutation can change mRNA → which may alter the amino acid/protein

Role of Ribosomes

Ribosomes "read" mRNA and build proteins with the help of tRNA

<p><strong>Transcription: DNA → mRNA</strong></p><p><strong>Translation: mRNA →(Using Ribosome) Protein</strong></p><p></p><p></p><p></p><table style="min-width: 75px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><th colspan="1" rowspan="1"><p><strong>Step</strong></p></th><th colspan="1" rowspan="1"><p><strong>Transcription</strong></p></th><th colspan="1" rowspan="1"><p><strong>Translation</strong></p></th></tr><tr><td colspan="1" rowspan="1"><p><strong>Definition</strong></p></td><td colspan="1" rowspan="1"><p>Making an RNA copy of a gene’s DNA sequence</p></td><td colspan="1" rowspan="1"><p>Converting mRNA into a chain of amino acids (protein)</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Location</strong></p></td><td colspan="1" rowspan="1"><p><strong>Nucleus</strong> (in eukaryotes)</p></td><td colspan="1" rowspan="1"><p><strong>Ribosome</strong> (cytoplasm)</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Main Molecule</strong></p></td><td colspan="1" rowspan="1"><p><strong>RNA Polymerase</strong></p></td><td colspan="1" rowspan="1"><p><strong>tRNA (transfer RNA)</strong> + Ribosome</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Product</strong></p></td><td colspan="1" rowspan="1"><p><strong>mRNA</strong> (messenger RNA)</p></td><td colspan="1" rowspan="1"><p><strong>Polypeptide</strong> (protein chain)</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Memory Tip</strong></p></td><td colspan="1" rowspan="1"><p>“C comes before L” → Transcription comes before Translation</p></td><td colspan="1" rowspan="1"><p>Translation happens <strong>after</strong> transcription</p></td></tr></tbody></table><p></p><table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><th colspan="1" rowspan="1"><p><strong>Concept</strong></p></th><th colspan="1" rowspan="1"><p><strong>Details</strong></p></th></tr><tr><td colspan="1" rowspan="1"><p>Codons</p></td><td colspan="1" rowspan="1"><p>3-letter mRNA sequences that code for amino acids</p></td></tr><tr><td colspan="1" rowspan="1"><p>Start Codon</p></td><td colspan="1" rowspan="1"><p>AUG — signals the start of translation</p></td></tr><tr><td colspan="1" rowspan="1"><p>Stop Codons</p></td><td colspan="1" rowspan="1"><p>UAA, UAG, UGA signal the end of translation</p></td></tr><tr><td colspan="1" rowspan="1"><p>Mutation Effect</p></td><td colspan="1" rowspan="1"><p>A DNA mutation can change mRNA → which may alter the amino acid/protein</p></td></tr><tr><td colspan="1" rowspan="1"><p>Role of Ribosomes</p></td><td colspan="1" rowspan="1"><p>Ribosomes "read" mRNA and build proteins with the help of tRNA</p></td></tr></tbody></table><p></p>
15
New cards

RNA Polymerase

🧬 RNA Polymerase – TEAS Exam Breakdown

RNA Polymerase is an enzyme essential in the transcription step of protein synthesis.


Definition:

RNA Polymerase is the enzyme that:

  • Binds to DNA at the start of a gene.

  • Unzips the DNA strands.

  • Builds a complementary strand of RNA by matching RNA bases to the DNA template strand.

16
New cards

Transcription vs Translation Part 2

Codons, Anticodons, & Translation

🎓 Flashcard Questions

1. Codons & Anticodons

  • Q: What is a codon?

    • A: A 3-nucleotide sequence on mRNA that codes for an amino acid.

  • Q: Where is the anticodon found?

    • A: On tRNA.

  • Q: What does the anticodon do?

    • A: It pairs with the codon to ensure the correct amino acid is added.

2. Translation Process

  • Q: What is formed during translation?

    • A: A polypeptide chain (protein).

  • Q: What molecule carries amino acids to the ribosome?

    • A: tRNA.

  • Q: What signals the end of translation?

    • A: A stop codon.

Summary Table: Codons, Anticodons, & Translation

Term

Definition

Translation

The process of converting mRNA into a chain of amino acids (a protein)

Codon

A 3-letter sequence on mRNA that codes for an amino acid

Anticodon

A complementary 3-letter sequence on tRNA that binds to the codon

tRNA (transfer RNA)

Carries amino acids and matches codons using its anticodon

Polypeptide Chain

A string of amino acids — final product of translation (protein)

Stop Codon

Signals the end of translation — does not code for an amino acid

🧠 Memory Tips:

  • Codon = Code (on mRNA)

  • Anticodon = Anti-match (on tRNA)

  • tRNA = Taxi that drops off the right amino acid

<p>Summary Table: Codons, Anticodons, &amp; Translation </p><table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><th colspan="1" rowspan="1"><p><strong>Term</strong></p></th><th colspan="1" rowspan="1"><p><strong>Definition</strong></p></th></tr><tr><td colspan="1" rowspan="1"><p><strong>Translation</strong></p></td><td colspan="1" rowspan="1"><p>The process of converting mRNA into a chain of amino acids (a <strong>protein</strong>)</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Codon</strong></p></td><td colspan="1" rowspan="1"><p>A <strong>3-letter sequence</strong> on <strong>mRNA</strong> that codes for an amino acid</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Anticodon</strong></p></td><td colspan="1" rowspan="1"><p>A <strong>complementary 3-letter sequence</strong> on <strong>tRNA</strong> that binds to the codon</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>tRNA (transfer RNA)</strong></p></td><td colspan="1" rowspan="1"><p>Carries amino acids and <strong>matches codons</strong> using its anticodon</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Polypeptide Chain</strong></p></td><td colspan="1" rowspan="1"><p>A string of amino acids — <strong>final product of translation</strong> (protein)</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Stop Codon</strong></p></td><td colspan="1" rowspan="1"><p>Signals the <strong>end of translation</strong> — does <strong>not</strong> code for an amino acid</p></td></tr></tbody></table><p><span data-name="brain" data-type="emoji">🧠</span> Memory Tips: </p><ul><li><p><strong>Codon = Code</strong> (on <strong>mRNA</strong>)</p></li><li><p><strong>Anticodon = Anti-match</strong> (on <strong>tRNA</strong>)</p></li><li><p><strong>tRNA = Taxi</strong> that drops off the right amino acid</p></li></ul><p></p>
17
New cards

Transcription vs Translation Flow

18
New cards

🧬 Types of Mutations (DNA Level)

Mutations are changes in the DNA sequence, and they can affect proteins in different ways depending on the type.

What are the two categories and what included in each.

🔷 1. DNA-Level Mutations (Type of Base Change)

DNA-Level Categories → Describes what kind of base change happened.

Mutation Type

What It Means

Transition

A-A

A purine purine (A G) or pyrimidine pyrimidine (C T)

Transversion

A-B

A purine pyrimidine (A or G C or T)

🧠 Key point:
These may or may not affect the protein — they only describe the DNA substitution type.


🔶 2. Protein-Level Mutations (Effect on Protein)

These describe what happens to the resulting protein after the DNA mutation.

Mutation Type

What It Means

Missense

Base change → changes amino acid

Nonsense

Base change → creates stop codon

Frameshift

Insertion/deletion → shifts reading frame, changing entire protein

Silent

DNA base changes, but amino acid stays the same (due to codon redundancy)

🧠 Key point:
These always affect the protein structure or function.


How This Helps:

  • Transition/transversion = what changed in the DNA

  • Silent/missense/nonsense/frameshift = what that change caused


🧬 Example:

GAG → GTG

  • Base A → T = transversion mutation (DNA-level)

  • Glutamic acid → valine = missense mutation (protein-level)

19
New cards

💡 Types of Genetic Mutations Quiz

🧬 Sickle Cell Anemia

  • Cause: A point mutation (a single base substitution) in the hemoglobin-beta gene.

  • Specifically, the DNA mutation changes the codon GAG (which codes for glutamic acid) to GTG (which codes for valine).

  • This change causes hemoglobin to form abnormally — leading to sickle-shaped red blood cells.

🧪 Type of Mutation:

This is a missense mutation because:

  • The mutation changes one amino acid to another.

  • It’s not a silent mutation (which doesn’t change the amino acid).

  • It’s not a deletion mutation (which removes a base).

  • It’s a substitution, more specifically a:

    • Transversion mutation → a purine is replaced by a pyrimidine, or vice versa.

Correct answer: Transversion mutation

📚 Flashcard-Style Questions for TEAS Practice:


1. What type of mutation causes sickle cell anemia?

A. Silent mutation
B. Deletion mutation
C. Transition mutation
D. Transversion mutation

Answer: D. Transversion mutation


2. What happens in a missense mutation?

A. One base is deleted, shifting the reading frame.
B. A base substitution causes one amino acid to change.
C. The sequence of amino acids remains unchanged.
D. The gene is completely removed.

Answer: B. A base substitution causes one amino acid to change.


3. Which of the following best describes a silent mutation?

A. It changes the amino acid completely.
B. It replaces a purine with a pyrimidine.
C. It changes the DNA base but does not affect the protein.
D. It results in a sickle-shaped red blood cell.

Answer: C. It changes the DNA base but does not affect the protein.


4. A mutation that results in a stop codon is called:

A. Silent mutation
B. Nonsense mutation
C. Missense mutation
D. Frameshift mutation

Answer: B. Nonsense mutation

20
New cards

🧬 Types of DNA Mutations

Mutation Type

Description

Example

Possible Effect

Substitution

One base (nucleotide) is replaced by another

A → G

Can be silent, missense, or nonsense

Insertion

One or more extra bases are added into the DNA

A → ATG

Can shift the reading frame (frameshift)

Deletion

One or more bases are removed from the DNA

ATG → AG

Can also cause a frameshift

Duplication

A section of DNA is copied and repeated

AT → ATAT

Can alter protein function

Inversion

A segment of DNA is flipped in orientation

ATC → CTA

May disrupt gene regulation or coding

Translocation

A segment of DNA is moved to a different part of the genome (often between chromosomes)

Often disrupts multiple genes; may lead to cancer

21
New cards

🧬 Disjunction vs. Nondisjunction

🧬 Disjunction vs. Nondisjunction

Term

Definition

When It Happens

Result

Disjunction

The normal separation of homologous chromosomes or sister chromatids

Meiosis I, Meiosis II, or mitosis

Each daughter cell gets the correct number of chromosomes

Nondisjunction

The failure to separate chromosomes properly

Meiosis I or II, or mitosis

Causes cells with too many or too few chromosomes


🔬 More Detail: Disjunction (Normal)

  • In Meiosis I: Homologous chromosomes separate

  • In Meiosis II: Sister chromatids separate
    Each gamete gets one copy of each chromosome


Nondisjunction (Abnormal)

  • Homologous chromosomes don’t separate in Meiosis I

  • Sister chromatids don’t separate in Meiosis II
    Gametes end up with 0 or 2 copies of a chromosome instead of 1


🚨 Results of Nondisjunction

Condition

Chromosome Affected

Result

Down syndrome

Trisomy 21

3 copies of chromosome 21

Turner syndrome

Monosomy X (45,X)

Only one X chromosome in females

Klinefelter syndrome

XXY (47 chromosomes)

Extra X chromosome in males


🎓 TEAS Tip:

Nondisjunction = incorrect separation

  • Happens during anaphase of meiosis or mitosis

  • Leads to aneuploidy (abnormal chromosome number)