1/58
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
tan(θ)
sin(θ)/cos(θ)
sec(θ)
1/cos(θ)
sin²(θ) + cos²(θ)
1
tan²(θ) + 1
sec²(θ)
sin(2θ)
2sin(θ)cos(θ)
cos(2θ)
cos²(θ) - sin²(θ)
cos²(θ)
½(1 + cos(2θ))
sin²(θ)
½(1 - cos(2θ))
sin(0)
0
cos(0)
1
tan(0)
0
sin(π/6)
1/2
cos(π/6)
√3/2
tan(π/6)
1/√3
sin(π/4)
1/√2
cos(π/4)
1/√2
tan(π/4)
1
sin(π/3)
√3/2
cos(π/3)
1/2
tan(π/3)
√3
sin(π/2)
1
cos(π/2)
0
tan(π/2)
undefined
d/dt (sin(t))
cos(t)
d/dt (cos(t))
-sin(t)
d/dt (tan(t))
sec²(t)
d/dt (sec(t))
sec(t)tan(t)
d/dt (arctan(t))
1/(1+t²)
d/dt (tᵏ)
ktᵏ⁻¹
d/dt (ln|t|)
1/t
d/dt (eᵏᵗ)
keᵏᵗ
∫ tan(t) dt
ln|sec(t)| + C
∫ sec(t) dt
ln|sec(t) + tan(t)| + C
∫[a to b] f(g(x))g'(x) dx
∫[g(a) to g(b)] f(u) du (u-substitution)
∫ u dv
uv - ∫ v du (Integration by Parts)
Substitution for √(b² - u²)
u = b sin(θ)
Substitution for √(b² + u²)
u = b tan(θ)
Substitution for √(u² - b²)
u = b sec(θ)
Volume by Cross-sections
V = ∫a to b(width)
Volume (Washer Method)
V = ∫[a to b] π((RADIUS)² - (radius)²)(width)
Volume (Shell Method)
V = ∫[a to b] 2π(radius)(height)(width)
Arc Length (Cartesian)
L = ∫[a to b] √(1 + (f'(x))²) dx
Arc Length (Parametric)
L = ∫[a to b] √((x'(t))² + (y'(t))²) dt
Surface Area of Revolution
SA = ∫[a to b] 2π(radius)(length)
Work (Constant/Variable Force)
W = ∫a to b(distance)
Work (Pumping Liquid)
W = ∫a to b(distance)(area)(width)
Hydrostatic Force
F = ∫a to b(depth)(width)(height)
Mass
M = ∫a to b(measure)
Moment
Mₓ = ∫[a to b] (distance to x-axis)(density)(measure) OR M
Center of Mass (x̄, ȳ)
(M
Polar to Cartesian Conversion (x)
x = r cos(θ)
Polar to Cartesian Conversion (y)
y = r sin(θ)
Polar to Cartesian Conversion (r²)
x² + y² = r²
Area in Polar Coordinates
A = ∫[α to β] ½ ((f(θ))² - (g(θ))²) dθ OR A = ∫[α to β] ½ r² dθ
Arc Length in Polar Coordinates
L = ∫[α to β] √((f(θ))² + (f'(θ))²) dθ OR L = ∫[α to β] √(r² + (dr/dθ)²) dθ
Trapezoidal Rule Error Bound (E
≤ M(b - a)³ / (12n²), where |f''(x)| ≤ M
Simpson's Rule Error Bound (E
≤ M(b - a)⁵ / (180n⁴), where |f⁽⁴⁾(x)| ≤ M
Trapezoidal Rule Formula Pattern
Δx/2 (1-2-2…2-1)
Simpson's Rule Formula Pattern
Δx/3 (1-4-2-4…2-4-1)