1/30
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
1 + tan² θ
cot² θ + 1
tan θ
cot θ
1
sec² θ - tan² θ =
cot² θ
csc² θ - 1
sin²θ+cos²θ=?
1
(double angle formula)
sin²x =
(1-cos2x)/2
(double angle formula)
cos²x =
(1+cos2x)/2
sinmxsinnx =
(1/2) [cos((m-n)x) - cos((m+n)x)]
sinmxcosnx =
(1/2) [sin((m-n)x) + sin((m+n)x)]
cosmxcosnx =
(1/2) [cos((m-n)x) + cos((m+n)x)]
dx sinθ
cosθ
dx cosθ
-sinθ
∫sinθ
-cosθ
∫cosθ
sinθ
∫sec²xdx
tanx+c
∫tan²xdx
tanx - x +c
∫secx dx
ln|secx + tanx| + c
∫tanxdx
-ln|cosx|+c
x = asinθ
dx = acosθ
√a²-u²
use x = asinθ
x = atanθ
dx = asec²θ
√a²+u²
use x =atanθ
x = asecθ
dx = asecθtanθ
√u²-a²
use x = asecθ
(Trig integrals)
When integrating sinx/cosx functions that have only even powers use the double angle identities to substitute
Example: ∫cos²dx = ∫((1+cos2x)/2)dx
Example: ∫cos²xsin²xdx = ∫((1+cos2x)/2)((1-cos2x)/2)dx
How to solve sinx/cosx functions that only have even powers
(Trig integrals)
When integrating tanx/secx functions that have only even powers use the (sec²x-tan²x = 1) identity to substitute OR use integration by parts
Example: ∫sec³xdx <- integration by parts
Example: ∫tan²xsec⁴xdx <- sec²x = tan²x+1
How to solve tanx/secx functions that only have even powers
Completing the square
trig triangle relations
(Trig integrals)
When integrating a trig function that contains a function to the odd power
Example: ∫sin³xdx
Example: ∫cos⁵xsin²xdx
Split it into a squared function and a single power function then use (sin²x = 1-cos²x) or (cos²x = 1-sin²x) to sub the squared power.
How to solve trig functions that have any odd powers