Systems of Linear Equations

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/17

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

18 Terms

1
New cards

Standard Form of 2 Equations with 2 Variables

𝑎1𝑥 + 𝑏1𝑦 = 𝑐1

𝑎2𝑥 + 𝑏2𝑦 = 𝑐2

where 𝑎1, 𝑎2, 𝑏1 , 𝑏2 are coefficients of variables 𝑥 and 𝑦, respectively, and 𝑐1, 𝑐2 are constants

2
New cards

Set of Solutions

set of all ordered n-tuples of numbers that make each equation a true statement

3
New cards

Equivalent

two linear systems that have the same solution set

4
New cards

Solving with 2 Variables

basic approach - simplify the problem by eliminating one of the variables, and finding the other

  • substituting

  • subtracting

  • equating

5
New cards

Substituting

Let us go back to our set of equations:

𝑥 + 2𝑦 = 5

3𝑥 + 9𝑦 = 21

In the first equation we can isolate 𝑥 to obtain: 𝑥 = 5 − 2𝑦

We can now substitute the top equation for 𝑥 into the second equation:

3 (5 − 2𝑦) + 9𝑦 = 21

We have just eliminated one of the variables, i.e., 𝑥, by substitution

15 − 6𝑦 + 9𝑦 = 21

3𝑦 = 6

𝑦 = 2

𝑥 = 5 − 2 ∙ 2 = 1

Solution <x, y> = <1, 2>

6
New cards

Subtracting

𝑥 + 2𝑦 = 5

3𝑥 + 9𝑦 = 21

Observe that the first equation’s truth remains if we were to multiply it by some constant, i.e., 3

3𝑥 + 6𝑦 = 15

3𝑥 + 9𝑦 = 21

If we subtract two true equations from each other we obtain another true equation.

3𝑥 + 9𝑦 − 3𝑥 − 6𝑦 = 21 − 15

3𝑦 = 6

𝑦 = 2

𝑥 + 2 ∙ 2 = 5

𝑥 = 1

Solution <x, y> = <1, 2>

7
New cards

Equating

𝑥 + 2𝑦 = 5

3𝑥 + 9𝑦 = 21

We can isolate 𝑥 in both equations:

𝑥 = 5 − 2𝑦

𝑥 = (21 − 9𝑦)/3 = 7 − 3𝑦

The variable 𝑥 is still unknown, but we know two facts about it

𝑥 = 5 − 2𝑦 = 7 − 3𝑦; by adding 3𝑦 to both sides of the last equation:

5 + 𝑦 = 7; by subtracting 5

𝑦 = 7 − 5 = 2

𝑥 = 5 − 2 ∙ 2 = 1

Solution <x, y> = <1, 2>

8
New cards

Solving with 2 Variables Graphically

Representing the set of solutions of a system of two linear equations:

𝑎1𝑥 + 𝑏1𝑦 = 𝑐1

𝑎2𝑥 + 𝑏2𝑦 = 𝑐2

  • set of points in 2 satisfying both equations simultaneously

  • the intersection of the two lines in 2

9
New cards

Types of Solutions with 2 Variables

A system of linear equations in which at least one of the coefficient is 𝑎 or 𝑏 ≠ 0 has

  • exactly one solution, or

  • infinitely many solutions, or

  • no solution

A system of linear equation is consistent if it has either one solution or infinitely many solutions

A system of linear equation is inconsistent if it has no solution

<p><span>A system of linear equations in which at least one of the coefficient is </span><span style="font-family: &quot;Cambria Math&quot;">𝑎</span><span> or </span><span style="font-family: &quot;Cambria Math&quot;">𝑏</span><span> ≠ 0 has</span></p><ul><li><p><span>exactly one solution, or</span></p></li><li><p><span>infinitely many solutions, or</span></p></li><li><p><span>no solution</span></p></li></ul><p>A system of linear equation is consistent if it has either one solution or infinitely many solutions</p><p>A system of linear equation is inconsistent if it has no solution</p>
10
New cards

Solving with 3 Variables

Representing the set of solutions of a system of three linear equations:

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2

𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 = 𝑑3

  • set of points in 3 satisfying all three equations simultaneously

  • the intersection of the three planes in 3

11
New cards

Solutions with 3 Variables

12
New cards

Solving with n Variables

Basic algebraic approach: simplify the problem by eliminating one of the variables, and finding the other

  • substituting

  • subtracting

  • equating

Advanced systematic approach: Gauss-Jordan elimination algorithm

13
New cards

Coefficient Matrix

Let’s us have:

𝑥 + 2𝑦 + 3𝑧 = 6

1 ∙ 𝑥 + 2 ∙ 𝑦 + 3 ∙ 𝑧 = 6

𝑥𝑦 + 𝑧 = 1

1 ∙ 𝑥 − 1 ∙ 𝑦 + 1 ∙ 𝑧 = 1

2𝑥 + 3𝑦 + 4𝑧 = 9

2 ∙ 𝑥 + 3 ∙ 𝑦 + 4 ∙ 𝑧 = 9

The coefficient matrix:

  • 𝐴 ∈ ℝ𝑚 × 𝑛, a rectangular array of real numbers, with 𝑚 rows and 𝑛 columns

  • one row for each equation

  • one column for the coefficients of each variable, i.e., 𝑥, 𝑦 and 𝑧

<p>Let’s us have:</p><table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1" style="border-style:solid;border-border-width:1pt;
  vertical-align:top;width:1.1944in;padding:4pt 4pt 4pt 4pt"><p><span style="font-family: &quot;Cambria Math&quot;">𝑥</span> + 2<span style="font-family: &quot;Cambria Math&quot;">𝑦</span> + 3<span style="font-family: &quot;Cambria Math&quot;">𝑧</span> = 6</p></td><td colspan="1" rowspan="1" style="border-style:solid;border-border-width:1pt;
  vertical-align:top;width:1.425in;padding:4pt 4pt 4pt 4pt"><p>1 ∙ <span style="font-family: &quot;Cambria Math&quot;">𝑥</span> + 2 ∙ <span style="font-family: &quot;Cambria Math&quot;">𝑦</span> + 3 ∙ <span style="font-family: &quot;Cambria Math&quot;">𝑧</span> = 6</p></td></tr><tr><td colspan="1" rowspan="1" style="border-style:solid;border-border-width:1pt;
  vertical-align:top;width:1.1944in;padding:4pt 4pt 4pt 4pt"><p><span style="font-family: &quot;Cambria Math&quot;">𝑥</span> − <span style="font-family: &quot;Cambria Math&quot;">𝑦</span> + <span style="font-family: &quot;Cambria Math&quot;">𝑧</span> = 1</p></td><td colspan="1" rowspan="1" style="border-style:solid;border-border-width:1pt;
  vertical-align:top;width:1.4034in;padding:4pt 4pt 4pt 4pt"><p>1 ∙ <span style="font-family: &quot;Cambria Math&quot;">𝑥</span> − 1 ∙ <span style="font-family: &quot;Cambria Math&quot;">𝑦</span> + 1 ∙ <span style="font-family: &quot;Cambria Math&quot;">𝑧</span> = 1</p></td></tr><tr><td colspan="1" rowspan="1" style="border-style:solid;border-border-width:1pt;
  vertical-align:top;width:1.2138in;padding:4pt 4pt 4pt 4pt"><p>2<span style="font-family: &quot;Cambria Math&quot;">𝑥</span> + 3<span style="font-family: &quot;Cambria Math&quot;">𝑦</span> + 4<span style="font-family: &quot;Cambria Math&quot;">𝑧</span> = 9</p></td><td colspan="1" rowspan="1" style="border-style:solid;border-border-width:1pt;
  vertical-align:top;width:1.4055in;padding:4pt 4pt 4pt 4pt"><p>2 ∙ <span style="font-family: &quot;Cambria Math&quot;">𝑥</span> + 3 ∙ <span style="font-family: &quot;Cambria Math&quot;">𝑦</span> + 4 ∙ <span style="font-family: &quot;Cambria Math&quot;">𝑧</span> = 9</p></td></tr></tbody></table><p>The coefficient matrix:</p><ul><li><p><span style="font-family: &quot;Cambria Math&quot;">𝐴 ∈ ℝ<sup>𝑚</sup></span><span><sup> × </sup></span><span style="font-family: &quot;Cambria Math&quot;"><sup>𝑛</sup></span><span>, a rectangular array of real numbers, with </span><span style="font-family: &quot;Cambria Math&quot;">𝑚</span><span> rows and </span><span style="font-family: &quot;Cambria Math&quot;">𝑛</span><span> columns</span></p></li><li><p>one row for each equation</p></li><li><p>one column for the coefficients of each variable, i.e., <span style="font-family: &quot;Cambria Math&quot;">𝑥</span>, <span style="font-family: &quot;Cambria Math&quot;">𝑦</span> and <span style="font-family: &quot;Cambria Math&quot;">𝑧</span></p></li></ul><p></p>
14
New cards

Augmented Matrix

Let’s us have:

𝑥 + 2𝑦 + 3𝑧 = 6

1 ∙ 𝑥 + 2 ∙ 𝑦 + 3 ∙ 𝑧 = 6

𝑥𝑦 + 𝑧 = 1

1 ∙ 𝑥 − 1 ∙ 𝑦 + 1 ∙ 𝑧 = 1

2𝑥 + 3𝑦 + 4𝑧 = 9

2 ∙ 𝑥 + 3 ∙ 𝑦 + 4 ∙ 𝑧 = 9

The augmented matrix:

  •   𝑚 × (𝑛 + 1)

  • one row for each equation

  • one column for the coefficients of each variable, i.e., 𝑥, 𝑦 and 𝑧

  • one final column for constant terms, after the vertical line

<p>Let’s us have:</p><table style="min-width: 50px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><td colspan="1" rowspan="1" style="border-style:solid;border-border-width:1pt;
  vertical-align:top;width:1.1944in;padding:4pt 4pt 4pt 4pt"><p><span>𝑥</span> + 2<span>𝑦</span> + 3<span>𝑧</span> = 6</p></td><td colspan="1" rowspan="1" style="border-style:solid;border-border-width:1pt;
  vertical-align:top;width:1.425in;padding:4pt 4pt 4pt 4pt"><p>1 ∙ <span>𝑥</span> + 2 ∙ <span>𝑦</span> + 3 ∙ <span>𝑧</span> = 6</p></td></tr><tr><td colspan="1" rowspan="1" style="border-style:solid;border-border-width:1pt;
  vertical-align:top;width:1.1944in;padding:4pt 4pt 4pt 4pt"><p><span>𝑥</span> − <span>𝑦</span> + <span>𝑧</span> = 1</p></td><td colspan="1" rowspan="1" style="border-style:solid;border-border-width:1pt;
  vertical-align:top;width:1.4034in;padding:4pt 4pt 4pt 4pt"><p>1 ∙ <span>𝑥</span> − 1 ∙ <span>𝑦</span> + 1 ∙ <span>𝑧</span> = 1</p></td></tr><tr><td colspan="1" rowspan="1" style="border-style:solid;border-border-width:1pt;
  vertical-align:top;width:1.2138in;padding:4pt 4pt 4pt 4pt"><p>2<span>𝑥</span> + 3<span>𝑦</span> + 4<span>𝑧</span> = 9</p></td><td colspan="1" rowspan="1" style="border-style:solid;border-border-width:1pt;
  vertical-align:top;width:1.4055in;padding:4pt 4pt 4pt 4pt"><p>2 ∙ <span>𝑥</span> + 3 ∙ <span>𝑦</span> + 4 ∙ <span>𝑧</span> = 9</p></td></tr></tbody></table><p>The augmented matrix:</p><ul><li><p><span>&nbsp;</span><span style="font-family: &quot;Cambria Math&quot;">∈</span><span> </span><span style="font-family: &quot;Cambria Math&quot;">ℝ<sup>𝑚</sup></span><span><sup> × (</sup></span><span style="font-family: &quot;Cambria Math&quot;"><sup>𝑛</sup></span><span><sup> + 1)</sup></span></p></li><li><p><span>one row for each equation</span></p></li><li><p><span>one column for the coefficients of each variable, i.e., </span><span style="font-family: &quot;Cambria Math&quot;">𝑥</span><span>, </span><span style="font-family: &quot;Cambria Math&quot;">𝑦</span><span> and </span><span style="font-family: &quot;Cambria Math&quot;">𝑧</span></p></li><li><p><span>one final column for constant terms, after the vertical line</span></p></li></ul><p></p>
15
New cards

Gauss-Jordan Elimination Algorithm

start with a system of linear equations expressed as augmented matrix

perform row operations to transform the matrix in equivalent forms

  • swap the position of 2 rows

  • multiply a row by a non 0 constant

  • add a multiple of one row to another row

end result - reduced row echelon form of the matrix

16
New cards

Reduced Row Echelon Form

The leading entry in a row of a matrix is the first non-zero entry in that row, starting from the left:

  1. all nonzero rows are above any rows of all zeros

  2. each leading entry of a row is in a column to the right of the leading entry of the row above it

  3. all leading entries in each non zero row are 1

  4. all entries in a column below leading entry are zero

  5. all entries in a column above leading entry are zero (1, 2, 3 in row echelon form)

<p>The leading entry in a row of a matrix is the first non-zero entry in that row, starting from the left:</p><ol type="1"><li><p><span>all nonzero rows are above any rows of all zeros</span></p></li><li><p><span>each leading entry of a row is in a column to the right of the leading entry of the row above it</span></p></li><li><p><span>all leading entries in each non zero row are 1</span></p></li><li><p><span>all entries in a column below leading entry are zero</span></p></li><li><p><span>all entries in a column above leading entry are zero (1, 2, 3 in row echelon form)</span></p></li></ol><p></p>
17
New cards

Forward Phase (left to right)

  1. Obtain a pivot (a leading one) in the leftmost column

  2. Subtract/add the row with the pivot from all rows below it, to obtain zeros in the entire column

  3. Look for a leading one in the next column to the right and Repeat

Outcome: row echelon form

<ol type="1"><li><p><span>Obtain a pivot (a leading one) in the leftmost column</span></p></li><li><p><span>Subtract/add the row with the pivot from all rows below it, to obtain zeros in the entire column</span></p></li><li><p><span>Look for a leading one in the next column to the right and Repeat</span></p></li></ol><p>Outcome: row echelon form</p>
18
New cards

Backward Phase (right to left)

  1. Find the rightmost pivot and use it to eliminate all numbers above the pivot in its column

  2. Move one column to the left and Repeat

Outcome: reduced row echelon form

<ol type="1"><li><p><span>Find the rightmost pivot and use it to eliminate all numbers above the pivot in its column</span></p></li><li><p><span>Move one column to the left and Repeat</span></p></li></ol><p>Outcome: reduced row echelon form</p>