1/26
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Pythagorean Identities
sin²θ + cos²θ = 1
1 + tan²θ = sec²θ
1 + cot²θ = csc²θ
sin(90°- θ)
cos(θ)
cos(90°- θ)
sin(θ)
tan(90°- θ)
cot(θ)
sin(-θ)
sin(θ)
cos(-θ)
cos(θ)
tan(-θ)
-tan(θ)
cos(a-b)
cos(a)sin(b)+cos(b)sin(a)
cos(a+b)
cos(a)sin(b)-cos(b)sin(a)
sin(a-b)
sin(a)cos(b)-sin(b)cos(a)
sin(a+b)
sin(a)cos(b)+sin(b)cos(a)
tan(a+b)
[tan(a)+tan(b)]/[1-tan(a)*tan(b)]
tan(a-b)
[tan(a)-tan(b)]/[1-tan(a)tan(b)]
sin(2a)
2sin(a)cos(a)
(Similar to sin(a+b), alternative to remember)
cos(2a)
cos^2(a)-sin^2(a)
1-2sin^2(a)
2cos^2(a)-1
tan^2(a)
[2tan(a)]/[1-tan^2(a)]
(Similar to tan(a+b), alternative to remember)
Laws of Sine
sin(A)/a = sin(B)/b = sin(C)/c
(For Laws of Sine and Cosine, "a, b, and c" mean the side lengths and "A, B, and C" mean the angles correspondent to the side lengths.)
Laws of Cosine
a^2 = b^2 + c^2 - 2cos(A)
b^2 = a^2 + c^2 - 2cos(B)
c^2 = a^2 + b^2 - 2cos(C)
(For Laws of Sine and Cosine, "a, b, and c" mean the side lengths and "A, B, and C" mean the angles correspondent to the side lengths.)
Product of Two Complex Numbers
z1z2 = (r1r2)(cos(θ1+θ2) + i*sin(θ1+θ2))
(z is a complex number)
Quotient of Two Complex Numbers
z1/z2 = (r1/r2)(cos(θ1-θ2) + i*sin(θ1-θ2))
(z is a complex number)
De Moivre's Theorem
z^n = [(r^n)(cos(nθ) + isin(n*θ)]
(z is a complex number)
The n-th root of a complex number
(n root of r)(cos((x+2(pi)k)/n) + i*sin((x+2(pi)k)/n)
k is any integer
Rectangular and Polar Form
Rectangular (x,y)
Polar (r, θ)
Rectangular to Polar Conversions
(x,y) = (rcos(θ), rsin(θ)
r = root(x^2 + y^2)
θ = arctan(y/x) = arcsin(y/r) = arccos(x/r)
Polar Form of Complex Number
z = (rcos(θ) + ri*sin(θ))
Form of Complex Numbers
z = a + bi
graphed in the complex plane a,b for x,y
(a,b are real numbers)
Average Rate of Change of Radius per Radian
[f(θ2) - f(θ1)] / [(θ2) - (θ1)]