1/58
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
∫sec(x) dx
ln|sec(x) + tan(x)| + C
∫cos(x) dx
sin(x) + C
∫sin(x) dx
-cos(x) + C
∫sec²(x) dx
tan(x) + C
∫tan(x) dx
-ln|cos(x)| + C
∫csc²(x) dx
-cot(x) + C
∫sec(x)tan(x) dx
sec(x) + C
∫csc(x)cot(x) dx
-csc(x) + C
∫1 / √(1-x²) dx
arcsin(x) + C
∫1 / (1+x²) dx
arctan(x) + C
∫1 / |x|√(x²-1) dx
arcsec(|x|) + C
∫ln|x| dx
x ln|x| - x + C
IBP (integration by parts)
∫udv = uv - ∫vdu
sin²(x)
= ½ (1 - cos(2x))
cos²(x)
= ½ (1 + cos(2x))
sin²(x) + cos²(x)
= 1
1 + tan²(x)
= sec²(x)
1 + cot²(x)
= csc²(x)
√(a² - x²)
x = asin(θ)
√(a² + x²)
x = atan(θ)
√(x² - a²)
x = asec(θ)
If f(x)≥g(x)≥0 on the interval [a,∞) then,
If ∫a to ∞ (f(x)dx) converges then so does ∫a to ∞ g(x)dx.
If ∫a to ∞ (g(x)dx) diverges then so does ∫a to ∞ f(x)dx.
disk method
V = ∫[a to b] πf(x)² dx
washer method
V = π∫[a to b] R²-r² dx
shells method
V = ∫[a to b] 2πrf(x) dx
average value on [a, b]
1/(b-a) ∫[a to b] f(x) dx
work
∫[a to b] F(x) dx (m = pV)
average x-value x̅ (M(y)/m)
(∫[a to b] xf(x) dx) / (∫[a to b] f(x) dx)
average y-value ȳ (M(x)/m)
½ (∫[a to b] f(x)²) / ∫[a to b] f(x) dx
area under a parametric curve
A = ∫[α to β] y(t)x′(t) dt
arc length
∫[a to b] √((dx/dt)² + (dy/dt)²) dt
convert from polar to cartesian
x = rcos(θ), y = rsin(θ)
convert from cartesian to polar
θ = arctan(y/x), r = √(x² + y²)
area under a polar curve
½ ∫[θ1 to θ2] f(θ)² dθ
In a sequence, if lim(n → ∞) |aₙ| = 0, then…
lim(n → ∞) aₙ = 0
In a sequence, if lim(n → ∞) aₙ = L and f is continuous, then…
lim(n → ∞) f(aₙ) = f(lim(n → ∞) aₙ) = f(L)
A sequence {aₙ} is increasing if…
aₙ₊₁ > aₙ
A sequence {aₙ} is decreasing if…
aₙ₊₁ < aₙ
slope of a line tangent to a parametric curve
dy/dx
Divergence Test
If the limit of aₙ ≠ 0, the series ∑aₙ diverges.
Integral Test
If f(x) is pos., cont., and dec., ∑aₙ and ∫f(x)dx both converge or both diverge.
Direct Comparison Test (DCT)
If 0 ≤ aₙ ≤ bₙ and ∑bₙ converges, so does ∑aₙ. If ∑aₙ converges, so does ∑bₙ.
Limit Comparison Test
If aₙ and bₙ > 0, lim (aₙ / bₙ) = c > 0, then ∑aₙ and ∑bₙ both converge or both diverge.
Alternating Series Test
If terms alternate signs, decrease in ||, and lim = 0, ∑(–1)ⁿaₙ converges.
Ratio Test
If lim |aₙ₊₁ / aₙ|
< 1, the series converges
> 1 diverges
= 1 inconclusive
Geometric Series
∑arⁿ if |r| < 1, converges to a/(1-r), diverges if |r| ≥ 1.
P-Test
∑1/nᵖ converges if p > 1, diverges if p ≤ 1.
Telescoping Series
Terms cancel out; use partial sums to find convergence.
Alternating Series Remainder
|Rₙ| ≤ |aₙ₊₁|
Integral Remainder
∫ [n+1,∞] f(x) dx ≤ Rₙ ≤ ∫ [n,∞] f(x) dx
Taylor Series (∑ notation)
f(x) = ∑ (f⁽ⁿ⁾(a)/n!) · (x – a)ⁿ
Taylor Series (expanded form)
f(x) = f(a) + f′(a)(x–a) + f″(a)(x–a)²/2! + ... + fⁿ(a)(x–a)ⁿ/n!
e^x Taylor Series
∑(0 to ∞) xⁿ / n! (RoC: ∞)
sin(x) Taylor Series
∑(0 to ∞) (-1)ⁿx^(2n+1) / (2n+1)! (RoC: ∞)
cos(x) Taylor Series
∑(0 to ∞) (-1)ⁿx^(2n) / (2n)! (RoC: ∞)
1/(1-x) Taylor Series
∑(0 to ∞) xⁿ (RoC: 1)
arctan(x) Taylor Series
∑(0 to ∞) (-1)ⁿx^(2n+1) / 2n+1 (RoC: ∞)
ln(1+x) Taylor Series
∑(1 to ∞) (-1)^(n-1)xⁿ / n (RoC: ∞)
|Rn(x)| <=
M/(n+1)! |x-a|^(n+1)