Chapter 2: Special Theory of Relativity

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/15

flashcard set

Earn XP

Description and Tags

PHYS2710

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

16 Terms

1
New cards

Galilean Transformations

x^{\prime}=x-vt, y^{\prime}=y , z^{\prime}\equiv z

2
New cards

Inverse Galilean Transformations

x=x^{\prime}+vt , y=y^{\prime} , z=z^{\prime}

3
New cards

Lorentz Tranformations

x^{\prime}=\gamma\left(x-\beta ct\right) , y^{\prime}=y , z^{\prime}\equiv z , t^{\prime}=\gamma\left(t-\frac{\beta x}{c}\right)

4
New cards

Inverse Lorentz Transformations

x=\gamma\left(x^{\prime}+\beta ct^{\prime}\right) , y=y^{\prime} , z=z^{\prime} , t=\gamma\left(t^{\prime}-\frac{\beta x^{\prime}}{c}\right)

5
New cards

Time Dilation

T^{\prime}=\gamma T_0

6
New cards

Length Contractions

L^{\prime}=\frac{L_0}{\gamma}

7
New cards

Lorentz Velocity Transformations

u_{x}^{\prime}=\frac{u_{x}-v}{1-\left(\frac{\beta}{c}\right)u_{x}} , u_{y}^{\prime}=\frac{u_{y}}{\gamma\left\lbrack1-\left(\frac{\beta}{c}\right)u_{x}\right\rbrack} , u_{z}^{\prime}=\frac{u_{z}}{\gamma\left\lbrack1-\left(\frac{\beta}{c}\right)u_{x}\right\rbrack}

8
New cards

Inverse Lorentz Velocity Transformations

u_{x}=\frac{u_{x}^{\prime}+v}{1+\left(\frac{\beta}{c}\right)u_{x}^{\prime}} , u_{y}^{\prime}=\frac{u_{y}^{\prime}}{\gamma\left\lbrack1+\left(\frac{\beta}{c}\right)u_{x}^{\prime}\right\rbrack} , u_{z}^{\prime}=\frac{u_{z}^{\prime}}{\gamma\left\lbrack1+\left(\frac{\beta}{c}\right)u_{x}^{\prime}\right\rbrack}

9
New cards

Relativistic Doppler Effect for a Source and Receiver Approaching

f_{obs}=\frac{\sqrt{1+\beta}}{\sqrt{1-\beta}}f_0

10
New cards

Relativistic Doppler Effect for a Source and Receiver Receding

f_{obs}=\frac{\sqrt{1+\beta}}{\sqrt{1-\beta}}f_0

11
New cards

Relativistic Momentum

\overrightarrow{p}=\gamma m\overrightarrow{u}

12
New cards

Relativistic Kinetic Energy

K=\gamma mc^2-mc^2=mc^2\left(\gamma-1\right)

13
New cards

Rest Energy

E_0=mc^2

14
New cards

Total Energy

E=\gamma mc^2=K+E_0

15
New cards

Momentum-Energy Relation

E^2=p^2c^2+E_0^2=p^2c^2+m^4c^2

16
New cards

Binding Energy

E_{B}=\sum m_{i}c^2-M_{bound}c^2