1/26
Flashcards generated from lecture notes on Integration techniques, trigonometric integrals, and integration by parts and partial fractions.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Reverse Power Rule
∫xⁿ dx = (x^(n+1))/(n+1) + C
∫sin(x) dx
-cos(x) + C
∫tan(x) dx
-ln|cos(x)| + C = ln|sec(x)| + C
∫aˣ dx
(a^x)/ln(a) + C
Integrals of the form ∫f(ax+b) dx
If ∫f(x) dx = F(x) + C, then ∫f(ax+b) dx = (1/a)F(ax+b) + C
Integration by Substitution - Idea
Introduce a new variable to convert a hard integral into an easy one
The Substitution Rule
∫g'(x)f(g(x)) dx = ∫f(u) du where u = g(x)
Trigonometric Substitution
Transforming integrals containing √(a² - x²) using the substitution x = a sin θ and the identity 1 - sin² θ = cos² θ.
Type 1 Trigonometric Integrals
∫cosᵐ(x)sinⁿ(x) dx for m, n ∈ Z⁺ ∪ {0}
Type 2 Trigonometric Integrals
∫cosᵐ(x)sinⁿ(x) dx where either m or n (but not both) must be odd
Type 3 Trigonometric Integrals
∫cos(mx)sin(nx) dx, ∫sin(mx)sin(nx) dx, ∫cos(mx)cos(nx) dx for m, n ∈ R
Identity cos²(x) + sin²(x) = 1
sin²(x) = 1 - cos²(x) and cos²(x) = 1 - sin²(x)
sin²(x)
(1 - cos(2x))/2
cos²(x)
(1 + cos(2x))/2
Product Identity for sin(x)cos(y)
sin(x)cos(y) = ½[sin(x+y) + sin(x-y)]
Product Identity for cos(x)cos(y)
cos(x)cos(y) = ½[cos(x+y) + cos(x-y)]
Product Identity for sin(x)sin(y)
sin(x)sin(y) = ½[cos(x-y) - cos(x+y)]
Even Function - cos(x) example
cos(y) = cos(-y)
Odd Function - sin(x) example
-sin(x) = sin(-x)
Integration by Parts Formula
∫udv = uv - ∫vdu
LIATE - Order of preference for choosing 'u' in Integration by Parts
Logs, Inverse Trig, Polynomials, Trig, Exponentials
Double Angle Identity
sin(2θ) = 2sin(θ)cos(θ)
Integration by Partial Fractions
Decompose rational functions into simpler fractions that can be easily integrated.
Proper Rational Function
The degree of the numerator is less than the degree of the denominator.
Improper Rational Function
The degree of the numerator is greater than or equal to the degree of the denominator.
Irreducible Quadratic Factor
A quadratic with no real roots.
Standard Integral
∫ dx / (a² + x²) = (1/a) tan⁻¹ (x/a) + C