Trig Integrals, Derivatives, and Identities

studied byStudied by 7 people
5.0(1)
learn
LearnA personalized and smart learning plan
exam
Practice TestTake a test on your terms and definitions
spaced repetition
Spaced RepetitionScientifically backed study method
heart puzzle
Matching GameHow quick can you match all your cards?
flashcards
FlashcardsStudy terms and definitions

1 / 34

flashcard set

Earn XP

Description and Tags

Calculus

35 Terms

1

cos²(x) + sin²(x) =

1

New cards
2

1+tan²(x) =

sec²(x)

New cards
3

1+cot²(x) =

csc²(x)

New cards
4

sin(2x) =

2sin(x)cos(x)

New cards
5

cos(2x)=

cos²(x) - sin²(x)

New cards
6

cos(2x)=

1 - 2sin²(x)

New cards
7

cos(2x)=

2cos²(x)-1

New cards
8

cos²(x)=

(1+cos(2x))/2

New cards
9

sin²(x)=

(1-cos(2x))/2

New cards
10

∫tan(x)dx =

-ln|cos(x)| + C

New cards
11

∫tan(x)dx =

ln|sec(x)| + C

New cards
12

∫cot(x)dx =

ln|sin(x)| + C

New cards
13

∫cot(x)dx =

-ln|csc(x)| + C

New cards
14

∫sec(x)dx

ln|sec(x) + tan(x)| + C

New cards
15

∫csc(x)dx

-ln|csc(x) + cot(x)| + C

New cards
16

∫sec²(x)dx =

tan(x)

New cards
17

∫sec(x)tan(x)dx =

sec(x) + C

New cards
18

∫-csc²(x)dx =

cot(x) + C

New cards
19

∫-csc(x)cot(x)dx =

csc(x) + C

New cards
20

d/dx(tan(x)) =

sec²(x)

New cards
21

d/dx(sec(x)) =

sec(x)tan(x)

New cards
22

d/dx(cot(x)) =

-csc²(x)

New cards
23

d/dx(csc(x)) =

-csc(x)cot(x)

New cards
24

d/dx(-ln|cos(x)|) =

tan(x)

New cards
25

d/dx(ln|sec(x)|) =

tan(x)

New cards
26

d/dx(ln|sin(x)|) =

cot(x)

New cards
27

d/dx(-ln|csc(x)|) =

cot(x)

New cards
28

d/dx(ln|sec(x) + tan(x)|) =

sec(x)

New cards
29

d/dx(-ln|sec(x) + tan(x)|) =

csc(x)

New cards
30

d/dx(sin⁻¹(x)) =

1/√(1-x²)

New cards
31

d/dx(cos⁻¹(x)) =

-1/√(1-x²)

New cards
32

d/dx(tan⁻¹(x)) =

1/(1+x²)

New cards
33

d/dx(cot⁻¹(x)) =

-1/(1+x²)

New cards
34

d/dx(sec⁻¹(x)) =

1/(x√(x²-1))

New cards
35

d/dx(csc⁻¹(x)) =

-1/(x√(x²-1))

New cards
robot