Trig Integrals, Derivatives, and Identities

5.0(1)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/34

flashcard set

Earn XP

Description and Tags

Calculus

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

35 Terms

1
New cards

cos²(x) + sin²(x) =

1

2
New cards

1+tan²(x) =

sec²(x)

3
New cards

1+cot²(x) =

csc²(x)

4
New cards

sin(2x) =

2sin(x)cos(x)

5
New cards

cos(2x)=

cos²(x) - sin²(x)

6
New cards

cos(2x)=

1 - 2sin²(x)

7
New cards

cos(2x)=

2cos²(x)-1

8
New cards

cos²(x)=

(1+cos(2x))/2

9
New cards

sin²(x)=

(1-cos(2x))/2

10
New cards

∫tan(x)dx =

-ln|cos(x)| + C

11
New cards

∫tan(x)dx =

ln|sec(x)| + C

12
New cards

∫cot(x)dx =

ln|sin(x)| + C

13
New cards

∫cot(x)dx =

-ln|csc(x)| + C

14
New cards

∫sec(x)dx

ln|sec(x) + tan(x)| + C

15
New cards

∫csc(x)dx

-ln|csc(x) + cot(x)| + C

16
New cards

∫sec²(x)dx =

tan(x)

17
New cards

∫sec(x)tan(x)dx =

sec(x) + C

18
New cards

∫-csc²(x)dx =

cot(x) + C

19
New cards

∫-csc(x)cot(x)dx =

csc(x) + C

20
New cards

d/dx(tan(x)) =

sec²(x)

21
New cards

d/dx(sec(x)) =

sec(x)tan(x)

22
New cards

d/dx(cot(x)) =

-csc²(x)

23
New cards

d/dx(csc(x)) =

-csc(x)cot(x)

24
New cards

d/dx(-ln|cos(x)|) =

tan(x)

25
New cards

d/dx(ln|sec(x)|) =

tan(x)

26
New cards

d/dx(ln|sin(x)|) =

cot(x)

27
New cards

d/dx(-ln|csc(x)|) =

cot(x)

28
New cards

d/dx(ln|sec(x) + tan(x)|) =

sec(x)

29
New cards

d/dx(-ln|sec(x) + tan(x)|) =

csc(x)

30
New cards

d/dx(sin⁻¹(x)) =

1/√(1-x²)

31
New cards

d/dx(cos⁻¹(x)) =

-1/√(1-x²)

32
New cards

d/dx(tan⁻¹(x)) =

1/(1+x²)

33
New cards

d/dx(cot⁻¹(x)) =

-1/(1+x²)

34
New cards

d/dx(sec⁻¹(x)) =

1/(x√(x²-1))

35
New cards

d/dx(csc⁻¹(x)) =

-1/(x√(x²-1))