1/12
CHEAT SHEET FOR GRAPHING TRIGS
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
THE CHART
Function | Domain | Range |
|---|---|---|
(\sin x) | ((-\infty,\infty)) | ([-1,1]) |
(\cos x) | ((-\infty,\infty)) | ([-1,1]) |
(\tan x) | (x\neq \frac{\pi}{2}+k\pi) | ((-\infty,\infty)) |
(\csc x) | (x\neq k\pi) | ((-\infty,-1]\cup[1,\infty)) |
(\sec x) | (x\neq \frac{\pi}{2}+k\pi) | ((-\infty,-1]\cup[1,\infty)) |
(\cot x) | (x\neq k\pi) | ((-\infty,\infty)) |
(\arcsin x) | ([-1,1]) | ([-\frac{\pi}{2},\frac{\pi}{2}]) |
(\arccos x) | ([-1,1]) | ([0,\pi]) |
(\arctan x) | ((-\infty,\infty)) | ((-\frac{\pi}{2},\frac{\pi}{2})) |
(\arccsc x) | ((-\infty,-1]\cup[1,\infty)) | ([-\frac{\pi}{2},0)\cup(0,\frac{\pi}{2}]) |
(\arcsec x) | ((-\infty,-1]\cup[1,\infty)) | ([0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi]) |
(\arccot x) | ((-\infty,\infty)) | ((0,\pi)) |
Sinx explanation
1. sinx
Domain: All real numbers, because sine is defined for every angle.
Domain: (−∞,∞)
Range: Sine outputs values on the y-axis from −1 to 1.
Range: [−1,1]How to see it: On the unit circle, sine = y-coordinate. y always between −1 and 1.
Cosx explanation
Domain: All real numbers (cosine exists for every angle).
Range: Cosine = x-coordinate on the unit circle. Always between −1 and 1.
Domain: (−∞,∞),Range: [−1,1]
Tanx explanation
3. tanx
Definition: tanx=sinx/cosx
Domain: Cosine cannot be zero (division by zero). Cos = 0 at x=π/2
Domain: x≠π/2+nπ
Range: Tangent can take any real number, so (−∞,∞)
Visual tip: Vertical asymptotes where cos = 0.
CSCx explanation
4. cscx
Definition: cscx=1/sinx
Domain: Cannot divide by 0 → sin x ≠ 0 → x≠nπ
Range: Reciprocal of sine → values outside [−1,1] Range: (−∞,−1]∪[1,∞)\
SECX
5. secx
Definition: secx=1/cosx
Domain: Cosine ≠ 0 → x≠π/2+nπ
Range: Reciprocal of cosine → (−∞,−1]∪[1,∞)
Tip: Secant “bounces” above and below y=1 and y=-1 with vertical asymptotes where cos=0.
COTX
6. cotx
Definition: cotx=cosx/sinx
Domain: Sin ≠ 0 → x≠nπ
Range: Any real number → (−∞,∞)(-\infty, \infty)(−∞,∞)
ARCSINX explanation
7. arcsinx\
Definition: Inverse of sine. arcsiny=angle whose sine = y
Domain: Input must be valid sine value → [−1,1]
Range: Output angles restricted to principal values → [−π/2,π/2]
Tip: Arcsin is the “undo” of sine. Range chosen so it’s a function (one output per input).
ARCCOSX explanation
Inverse of cosine
Domain: x-values must be in [-1,1]
Range: Angles in [0, π] (Quadrant I & II)
Tip: Ensures one output per input (function).
ARCTANX explanation
9. arctanx
Inverse of tangent
Domain: Any real number (tan can output anything)
Range: Angles in (−π/2,π/2)
Tip: Tan never actually reaches ±π/2 → open interval.
CSCX explanation
10. arccscx
Inverse of cosecant
Domain: Must be outside [-1,1] → x≤−1 or x≥1x
Range: Angles in Quadrants I & IV, avoid 0 → [−π/2,0)∪(0,π/2]
SECX explanation
Inverse of secant
Domain: x ≤ -1 or x ≥ 1
Range: Angles in [0, π], excluding π/2 → [0,π/2)∪(π/2,π)
ARCCOTX explanation
Inverse of cotangent
Domain: Any real number (cot can output any number)
Range: Angles in (0, π) → one output per input