DOMAIN AND RANGE FOR TRIG GRAPHS AND INVERSE TRIG GRAPHS AND EXPLANATION

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/12

flashcard set

Earn XP

Description and Tags

CHEAT SHEET FOR GRAPHING TRIGS

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

13 Terms

1
New cards

THE CHART

Function

Domain

Range

(\sin x)

((-\infty,\infty))

([-1,1])

(\cos x)

((-\infty,\infty))

([-1,1])

(\tan x)

(x\neq \frac{\pi}{2}+k\pi)

((-\infty,\infty))

(\csc x)

(x\neq k\pi)

((-\infty,-1]\cup[1,\infty))

(\sec x)

(x\neq \frac{\pi}{2}+k\pi)

((-\infty,-1]\cup[1,\infty))

(\cot x)

(x\neq k\pi)

((-\infty,\infty))

(\arcsin x)

([-1,1])

([-\frac{\pi}{2},\frac{\pi}{2}])

(\arccos x)

([-1,1])

([0,\pi])

(\arctan x)

((-\infty,\infty))

((-\frac{\pi}{2},\frac{\pi}{2}))

(\arccsc x)

((-\infty,-1]\cup[1,\infty))

([-\frac{\pi}{2},0)\cup(0,\frac{\pi}{2}])

(\arcsec x)

((-\infty,-1]\cup[1,\infty))

([0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi])

(\arccot x)

((-\infty,\infty))

((0,\pi))

2
New cards

Sinx explanation

1. sin⁡x

  • Domain: All real numbers, because sine is defined for every angle.

Domain: (−∞,∞)

  • Range: Sine outputs values on the y-axis from −1 to 1.

Range: [−1,1]How to see it: On the unit circle, sine = y-coordinate. y always between −1 and 1.

3
New cards

Cosx explanation

  • Domain: All real numbers (cosine exists for every angle).

  • Range: Cosine = x-coordinate on the unit circle. Always between −1 and 1.

Domain: (−∞,∞),Range: [−1,1]

4
New cards

Tanx explanation

3. tan⁡x

  • Definition: tan⁡x=sin⁡x/cos⁡x

  • Domain: Cosine cannot be zero (division by zero). Cos = 0 at x=π/2

Domain: x≠π/2+nπ

  • Range: Tangent can take any real number, so (−∞,∞)

Visual tip: Vertical asymptotes where cos = 0.

5
New cards

CSCx explanation

4. csc⁡x

  • Definition: csc⁡x=1/sin⁡x

  • Domain: Cannot divide by 0 → sin x ≠ 0 → x≠nπ

  • Range: Reciprocal of sine → values outside [−1,1] Range: (−∞,−1]∪[1,∞)\

6
New cards

SECX

5. sec⁡x

  • Definition: sec⁡x=1/cos⁡x​

  • Domain: Cosine ≠ 0 → x≠π/2+nπ

  • Range: Reciprocal of cosine → (−∞,−1]∪[1,∞)

Tip: Secant “bounces” above and below y=1 and y=-1 with vertical asymptotes where cos=0.

7
New cards

COTX

6. cot⁡x

  • Definition: cot⁡x=cos⁡x/sin⁡x

  • Domain: Sin ≠ 0 → x≠nπ

  • Range: Any real number → (−∞,∞)(-\infty, \infty)(−∞,∞)

8
New cards

ARCSINX explanation

7. arcsin⁡x\

  • Definition: Inverse of sine. arcsin⁡y=angle whose sine = y

  • Domain: Input must be valid sine value → [−1,1]

  • Range: Output angles restricted to principal values[−π/2,π/2]

Tip: Arcsin is the “undo” of sine. Range chosen so it’s a function (one output per input).

9
New cards

ARCCOSX explanation

  • Inverse of cosine

  • Domain: x-values must be in [-1,1]

  • Range: Angles in [0, π] (Quadrant I & II)

Tip: Ensures one output per input (function).

10
New cards

ARCTANX explanation

9. arctan⁡x

  • Inverse of tangent

  • Domain: Any real number (tan can output anything)

  • Range: Angles in (−π/2,π/2)

Tip: Tan never actually reaches ±π/2 → open interval.

11
New cards

CSCX explanation

10. arccscx

  • Inverse of cosecant

  • Domain: Must be outside [-1,1] → x≤−1 or x≥1x

  • Range: Angles in Quadrants I & IV, avoid 0 → [−π/2,0)∪(0,π/2]

12
New cards

SECX explanation

  • Inverse of secant

  • Domain: x ≤ -1 or x ≥ 1

  • Range: Angles in [0, π], excluding π/2 → [0,π/2)∪(π/2,π)

13
New cards

ARCCOTX explanation

  • Inverse of cotangent

  • Domain: Any real number (cot can output any number)

  • Range: Angles in (0, π) → one output per input