Looks like no one added any tags here yet for you.
Plane Equation (3 var)
Normal Vector: <a,b,c>
Point: (x0,y0,z0) a(x-x0) + b(y-y0) + c(z-z0) = 0
Find the Tangent Plane (f(x,y,z))
a(x-x0) + b(y-y0) + c(z-z0) = 0
⛛f(x,y,z) = (a,b,c)
Find the Tangent Plane (z = f(x,y))
z = f(a,b) + δf/δx(a,b)(x-a) + δf/δy(a,b)(y-b)
Find the Linear Approximation L(x0,y0) =
L(x0,y0) = F(x0,y0) + δf/δx(a,b)(x-x0) + δf/δy(a,b)(y-y0)
Find tangent plane, plug in approxed values
Find the direction f increases most rapidly at (x,y,z)
⛛f(x,y,z) / ||⛛f(x,y,z)||
How fast is f increasing?
||⛛f(x,y,z)||
Find the Normal Vector
ax + by + cz: OR u × v OR ⛛f(x0,y0,z0)
Find the plane at (x0,y0,z0)
⛛f(x0,y0,z0) → a(x-x0) + b(y-y0) +c(z-z0) = 0
Area of a Parallelogram with corners ABCD
||AB × AC||
Area of a Triangle with corners ABC
1/2||AB × AC||
Find the Plane containing A, B, C
Point: (x0,y0,z0) Normal Vector: AB × AC a(x-x0) + b(y-y0) +c(z-z0) = 0
Distance from point to plane
|n · AD| / ||n||
Distance from point to line
(||v × AC||)/||v||
Vector Equations
r(t)=r0+tv
r(0) is the point
v is the direction vector
Symmetric Equations
t = (x-x0)/a = (y-y0)/b = (z-z0)/c
Parametric Equations
x(t) = x0 + ta, y(t) = y0 + tb, z(t) = z0 + tc
Rate of Change (chain rule)
F(r(t)) = ⛛f(r(t)) · r’(t) = (δf/δx)(dx/dt) + (δf/δy)(dy/dt)
Rate of Change in terms of ⛛T & R(t)
⛛T(r(0))
Surface when r=1
Cylinder
Surface when z=r
Cone
Surface when z=r²
Paraboloid
Surface when P = 1
Sphere
Surface when φ = π/4
Cone
Surface when φ = π/2
The Plane z=0
Surface when θ = π/2
Half of the yz-plane
Find Absolute Extrema (no lagrange)
Use gradiant to find critical points Parameterize boundary, plug into f Solve d/dt = 0 Plug t into parameter Solve for z, find max and min
Find Absolute Extrema (lagrange)
Use gradiant to find critical points ⛛f(x,y,z) = λ⛛g(x,y,z) Solve for points Find max/min
Hessian Matrix
| δ²f/δx²(a,b) δ²f/δxδy(a,b) |
| δ²f/δyδx(a,b) δ²f/δy²(a,b) |
det(H(a,b)(f)) = δ²f/δx²(a,b) * δ²f/δy²(a,b) - (δ²f/δxδy(a,b))²
Hessian: Det(H(a,b)(f)) > 0 & δ²f/δx²(a,b) > 0
Local Min
Hessian: Det(H(a,b)(f)) > 0 & δ²f/δx²(a,b) < 0
Local Max
Hessian: Det(H(a,b)(f)) < 0
Saddle Point
Hessian: Det(H(a,b)(f)) = 0
Inconclusive
Unit Vector
v/||v||
Magnitude
√(x² + y² + z²)
v + w
<a+x, b+y, c+z>
v - w
<a-x, b-y, c-z>
v · w Dot Product
ax + by + cz
v · v
||v||²
v · w angle
||v||||w||cos(θ)
projw(v)
w((v · w)/(||w||²))
projv(w)
v((v · w)/(||v||²))
v × w cross product
i j k
v1 v2 v3
w1 w2 w3
||v × w||
||v||||w||sin(θ)
Area of a Parallelapiped
u · (v × w)
Arc Length
s(t) = ∫0t||r’(u)||du
Speed
||v(t)|| (parameterized)
Unit Tangent Vector
v(t)/||v(t)|| (parameterized)
df/dt =
df/dt = (δf/δx * dx/dt) + (δf/δy * dy/dt) + (δf/δz * dz/dt)
Gradient ⛛f(x,y) =
⛛f(x,y) = <δf/δx(x,y), δf/δy(x,y)>
Directional Derivative Df(a,b)v =
Df(a,b)v = v/||v|| · ⛛f(x,y)
Directional Derivative Df(a,b)(v/||v||)
(1/||v||)Df(a,b)v
Critical Points
⛛f(x,y) = 0, solve for x,y,z.
Lagrange
⛛f(x,y,z) = λ⛛g(x,y,z)
Center of mass (x0,y0)
x0 = 1/M∫∫DxdA, y0 = 1/M∫∫DydA,
Work: Kinetic Energy Gained
(m/2) [||r’(t)||]ab
Work: Potential Energy Lost
Work = f(r(b)) - f(r(a))
Average value of f(x,y)
(1/Area(D)) ∫∫D f(x,y)dA
Area of D
∫∫D 1
Volume of E
∫∫∫E 1
T(u,v) =
(x(u,v), y(u,v))
Jacobian: J(u,v) =
| δx/δu δx/δv |
| δy/δu δy/δv | = (δx/δu)(δy/δv) - (δx/δv)(δy/δu)
∫∫T(D) f(x,y)dA =
∫∫D f(x(u,v), y(u,v)) * |J(u,v)|
Polar Jacobian
r
Cylindrical Jacobian
r
Spherical Jacobian
Ρ2sinφ
T(r,θ) =
(x = rcosθ, y = rsinθ)
T(r,θ,z) =
(x = rcosθ, y = rsinθ, z=z)
T(Ρ,φ,θ)
(x = Ρsinφcosθ, y = Ρsinφsinθ, z = Ρcosφ)
Polar/Cylindrical Coords: x =
x = rcosθ
Polar/Cylindrical Coords: y =
y = rsinθ
Polar/Cylindrical Coords: r =
r = √(x²+y²)
Polar/Cylindrical Coords: θ =
θ = arctan(y/x)
Spherical Coords: r =
r = Ρsinφ
Spherical Coords: Ρ =
Ρ = √(x²+y²+z²)
Spherical Coords: φ =
φ = arccos(z/P)
Spherical Coords: θ =
θ = arctan(y/x)
If E is symmetric about x=0 and F(x,y,z) is odd on x:
∫∫∫E f(x,y,z)dV = 0
Normalizing a vector field
F / ||F||
Conservative Vector:
F = ⛛ f
If a vector field is conservative, simply connected, f(x,y):
δQ/δx = δP/δy
If a vector field is conservative, simply connected, f(x,y,z):
δR/δy = δQ/δz, δP/δz = δR/δx, δQ/δx = δP/δy
Line Integral
∫ab f(r(t)) * ||r’(t)||
Integral of a vector field
∫ab F · dr
Integral of a vector field (along an parameterized curve)
∫ab F(r(t)) · r’(t)
Fundamental Theorem of Line Integrals:
If F = ⛛f and C is (x0,y0) → (x1,y1), then ∫cF · dr = f(x1,y1) - f(x0,y0)
FToLI: If C is a closed path:
∫c⛛f · dr = 0
cos(0)
1
sin(0)
0
cos(π/4)
(√2)/2
sin(π/4)
(√2)/2
cos(π/2)
0
sin(π/2)
1
cos(π)
-1
sin(π)
0
cos(3π/2)
0
sin(3π/2)
-1
Trig Identity: cos2(x) =
(1 + cos(2x)) / 2
Trig Identity: sin2(x) =
(1 - cos(2x)) / 2
Green’s Theorem
∫δDF · dR = ∫∫D δQ/δx - δP/δy dA
Area using Green’s Theorem: Flux is
F = <-y/2,x/2>, <-y,0>, <0,x>