Ch. 10 Sequences and Series - Precalculus

studied byStudied by 43 people
5.0(3)
learn
LearnA personalized and smart learning plan
exam
Practice TestTake a test on your terms and definitions
spaced repetition
Spaced RepetitionScientifically backed study method
heart puzzle
Matching GameHow quick can you match all your cards?
flashcards
FlashcardsStudy terms and definitions

1 / 22

flashcard set

Earn XP

Description and Tags

23 Terms

1

Convergent sequence

Has a limit such that the terms approach a unique number

New cards
2

Divergent sequence

The terms don’t approach a finite number

New cards
3

Series

  • Indicated sum of all the terms of a sequence

    • Finite & infinite

New cards
4

nth Partial Sum (Sₙ)

The sum of the first n terms of a series

New cards
5

Recursive formula for arithmetic sequence

aₙ = aₙ₋₁ + d

New cards
6

Explicit formula for arithmetic sequence

aₙ = a₁ + (n-1)d

New cards
7

Arithmetic sequence with 2nd differences

  • Quadratic

  • aₙ = an² + bn + c

New cards
8

nth Partial Sum of an Arithmetic Series

  • Sₙ = (ⁿ/₂)(a₁ + aₙ)

  • Sₙ = (ⁿ/₂)[2a₁ + (n-1)d]

<ul><li><p>Sₙ = (ⁿ/₂)(a₁ + aₙ)</p></li><li><p>Sₙ = (ⁿ/₂)[2a₁ + (n-1)d]</p></li></ul>
New cards
9

Recursive formula for geometric sequence

aₙ = aₙ₋₁・r

New cards
10

Explicit formula for geometric sequence

aₙ = a₁・rⁿ⁻¹

New cards
11

nth Partial Sum of a Geometric Series

  • Sₙ = a₁[(1-rⁿ)/(1-r)]

  • Sₙ = (a₁-aₙr)/(1-r)

<ul><li><p>Sₙ = a₁[(1-rⁿ)/(1-r)]</p></li><li><p>Sₙ = (a₁-aₙr)/(1-r)</p></li></ul>
New cards
12

Sum of an Infinite Geometric Series

S = a₁/(1-r)

<p>S = a₁/(1-r)</p>
New cards
13

Pascal’s Triangle

A triangular arrangement of numbers that gives the coefficients in the expansion of any binomial expression, such as (x + y)ⁿ

  • Recursive: coefficients in the (n-1)th row can be added together to find coefficients in the nth row

<p>A triangular arrangement of numbers that gives the coefficients in the expansion of any binomial expression, such as (x + y)ⁿ</p><ul><li><p>Recursive: coefficients in the (n-1)th row can be added together to find coefficients in the nth row</p></li></ul>
New cards
14

Formula for Binomial Coefficients of (a + b)ⁿ

ₙCᵣ = n!/[(n-r)!r!]

  • For the aⁿ⁻ᣴbᣴ term

<p>ₙCᵣ = n!/[(n-r)!r!]</p><ul><li><p>For the aⁿ⁻ᣴbᣴ term</p></li></ul>
New cards
15

Formula for Binomial Experiments of (p + q)ⁿ

ₙCₓ・pˣ qⁿ⁻ˣ

  • x = successes

  • n = # of trials

New cards
16

Binomial Theorem

(a + b)ⁿ = ₙC₀ aⁿb⁰ + ₙC₁ aⁿ⁻¹b¹ + ₙC₂ aⁿ⁻²b² + … + ₙCᵣaⁿ⁻ᣴbᣴ + ₙCₙ a⁰bⁿ

  • r = 0, 1, 2, … , n

<p>(a + b)ⁿ = ₙC₀ aⁿb⁰ + ₙC₁ aⁿ⁻¹b¹ + ₙC₂ aⁿ⁻²b² + … +  ₙCᵣaⁿ⁻ᣴbᣴ + ₙCₙ a⁰bⁿ</p><ul><li><p>r = 0, 1, 2, … , n</p></li></ul>
New cards
17

Power Series

  • Infinite

  • x & aₙ take on any values for n = 0, 1, 2, …

<ul><li><p>Infinite</p></li><li><p>x &amp; aₙ take on any values for n = 0, 1, 2, …</p></li></ul>
New cards
18

Exponential Series

  • Infinite

  • Represents eˣ

<ul><li><p>Infinite</p></li><li><p>Represents eˣ</p></li></ul>
New cards
19

Power Series for cos x

knowt flashcard image
New cards
20

Power Series for sin x

knowt flashcard image
New cards
21

Euler’s Formula

eⁱᶿ = cos θ + i sin θ

New cards
22

Exponential Form of a Complex Number

a + bi = r × eⁱᶿ

  • r = √(a² + b²)

  • θ = tan⁻¹(b/a); a > 0

  • θ = tan⁻¹(b/a) + π; a < 0

New cards
23

Natural Logarithm of a Negative Number

iπ = ln (-1)

  • ln (-k) = ln [(k)(-1)]

    • ln (k) + ln (-1)

    • ln k + iπ

New cards

Explore top notes

note Note
studied byStudied by 26 people
854 days ago
4.0(1)
note Note
studied byStudied by 7 people
5 days ago
5.0(9)
note Note
studied byStudied by 6 people
762 days ago
5.0(1)
note Note
studied byStudied by 63 people
225 days ago
5.0(1)
note Note
studied byStudied by 11 people
293 days ago
5.0(1)
note Note
studied byStudied by 2 people
13 days ago
5.0(1)
note Note
studied byStudied by 14 people
818 days ago
5.0(1)
note Note
studied byStudied by 11 people
435 days ago
5.0(1)

Explore top flashcards

flashcards Flashcard (46)
studied byStudied by 34 people
273 days ago
5.0(1)
flashcards Flashcard (97)
studied byStudied by 18 people
784 days ago
5.0(1)
flashcards Flashcard (35)
studied byStudied by 23 people
689 days ago
5.0(3)
flashcards Flashcard (198)
studied byStudied by 5 people
797 days ago
5.0(1)
flashcards Flashcard (42)
studied byStudied by 3 people
247 days ago
5.0(1)
flashcards Flashcard (25)
studied byStudied by 2 people
618 days ago
4.0(1)
flashcards Flashcard (28)
studied byStudied by 259 people
380 days ago
5.0(1)
flashcards Flashcard (119)
studied byStudied by 132 people
141 days ago
5.0(2)
robot