1/64
Flashcards covering basic derivatives and integrals. Note: For deratiives u is u(x) & v is v(x) - apply chain rule when necessary.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
d/dx [cu] =
cu'
d/dx [u ± v] =
u' ± v'
d/dx [uv] =
uv' + vu'
d/dx [u/v] =
(vu' - uv') / v^2
d/dx [c] =
0
d/dx [u^n] =
nun^(n-1)u'
d/dx [x] =
1
d/dx [|u|] =
(u' * u) / |u|, u != 0
d/dx [ln u] =
u' / u
d/dx [e^u] =
e^u * u'
d/dx [loga u] =
u' / ((ln a) * u)
d/dx [a^u] =
(ln a) * a^u * u'
d/dx [sin u] =
(cos u) * u'
d/dx [cos u] =
-(sin u) * u'
d/dx [tan u] =
(sec^2 u) * u'
d/dx [cot u] =
-(csc^2 u) * u'
d/dx [sec u] =
(sec u tan u) * u'
d/dx [csc u] =
-(csc u cot u) * u'
d/dx [arcsin u] =
u' / sqrt(1 - u^2)
d/dx [arccos u] =
-u' / sqrt(1 - u^2)
d/dx [arctan u] =
u' / (1 + u^2)
d/dx [arccot u] =
-u' / (1 + u^2)
d/dx [arcsec u] =
u' / (|u| * sqrt(u^2 - 1))
d/dx [arccsc u] =
-u' / (|u| * sqrt(u^2 - 1))
d/dx [sinh u] =
(cosh u) * u'
d/dx [cosh u] =
(sinh u) * u'
d/dx [tanh u] =
(sech^2 u) * u'
d/dx [coth u] =
-(csch^2 u) * u'
d/dx [sech u] =
-(sech u tanh u) * u'
d/dx [csch u] =
-(csch u coth u) * u'
d/dx [sinh^-1 u] =
u' / sqrt(u^2 + 1)
d/dx [cosh^-1 u] =
u' / sqrt(u^2 - 1)
d/dx [tanh^-1 u] =
u' / (1 - u^2)
d/dx [coth^-1 u] =
u' / (1 - u^2)
d/dx [sech^-1 u] =
-u' / (u * sqrt(1 - u^2))
d/dx [csch^-1 u] =
-u' / (|u| * sqrt(1 + u^2))
∫ du =
u + C
∫ k du =
ku + C
∫ u^n du =
(u^(n+1))/(n+1) + C, for n != -1
∫ cos u du =
sin u + C
∫ sin u du =
-cos u + C
∫ sec^2 u du =
tan u + C
∫ sec u tan u du =
sec u + C
∫ csc^2 u du =
-cot u + C
∫ csc u cot u du =
-csc u + C
∫ e^u du =
e^u + C
∫ a^u du =
(1/ln a) * a^u + C, a > 0
∫ 1/u du =
ln |u| + C
∫ tan u du =
-ln |cos u| + C = ln |sec u| + C
∫ cot u du =
ln |sin u| + C = -ln |csc u| + C
∫ sec u du =
ln |sec u + tan u| + C = -ln |sec u - tan u| + C
∫ csc u du =
-ln |csc u + cot u| + C = ln |csc u - cot u| + C
∫ du / sqrt(a^2 - u^2) =
arcsin(u/a) + C
∫ du / (a^2 + u^2) =
(1/a) * arctan(u/a) + C
∫ du / (u * sqrt(u^2 - a^2)) =
(1/a) * arcsec(|u|/a) + C
∑ (from i=1 to n) c =
cn
∑ (from i=1 to n) i =
n(n+1)/2
∑ (from i=1 to n) i^2 =
n(n+1)(2n+1)/6
∑ (from i=1 to n) i^3 =
(n^2(n+1)^2)/4
∑ (from i=1 to n) i^4 =
(n(2n+1)(n+1)(3n^2+3n-1)) / 30
Lower Sums (L.S.) =
lim n→∞ ∑ (from i=1 to n) f(mi)∆x, where f(mi) is the min. value of f on the subinterval
Upper Sums (U.S.) =
lim n→∞ ∑ (from i=1 to n) f(Mi)∆x, where f(Mi) is the max. value of f on the subinterval
Left Endpoints =
a + (i - 1)∆x, for i = 1, …, n
Right Endpoints =
a + i∆x, for i = 1, …, n
∆x =
(b - a) / n