CALC - Memorize for the AP Calculus Test

4.0(1)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/38

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

39 Terms

1
New cards
Y=f(x) must be continuous at each:
\-Critical Point or undefined and endpoints
2
New cards
Local Minimum
Goes (-,0,+) or (-, und, +)
3
New cards
Local Maximum
Goes (+,0,-) or (+, und, -)
4
New cards
Point of Inflection
* Concavity Changes


* (+,0,-) or (-,0,+)
* (+,und,-) or (-,und,+)
5
New cards
D/dx(sinx)
Cosx
6
New cards
D/dx(cosx)
\-sinx
7
New cards
D/dx(tanx)
SecĀ²x
8
New cards
D/dx(cotx)
\-cscĀ²x
9
New cards
D/dx(secx)
Secxtanx
10
New cards
D/dx(cscx)
\-cscxcotx
11
New cards
D/dx (lnx)
1/x Ɨ derivative of x
12
New cards
D/dx(eāæ)
Eāæ derivative of n
13
New cards
āˆ«Cosx
\-Sinx
14
New cards
āˆ«-sinx
Cosx
15
New cards
āˆ«SecĀ²x
Tanx
16
New cards
āˆ«-cscĀ²x
Cotx
17
New cards
āˆ«Secxtanx
Secx
18
New cards
āˆ«-cscxcotx
Cscx
19
New cards
āˆ«1/n
Ln(n)
20
New cards
āˆ«Eāæ
Eāæ
21
New cards
When doing integrals never forget
Constant (+c)
22
New cards
āˆ«Axāæ
A/n+1(xāæāŗĀ¹)+C
23
New cards
āˆ«Tanx
* Ln|secx|+c
* -Ln|cosx|+c
24
New cards
āˆ«Secx
Ln|secx+tanx|+c
25
New cards
D/dx(sinā»Ā¹x)
1/āˆš1-xĀ²
26
New cards
D/dx(cosā»Ā¹x)
\-1/āˆš1-xĀ²
27
New cards
D/dx(tanā»Ā¹x)
1/1+xĀ²
28
New cards
D/dx(cotā»Ā¹x)
\-1/1+xĀ²
29
New cards
With derivative inverses
You plug in the number of the trigonometric function into x
30
New cards
D/dx(secā»Ā¹x)
1/|x|āˆšxĀ²-1
31
New cards
D/dx(cscā»Ā¹x)
\-1/|x|āˆšxĀ²-1
32
New cards
D/dx(aāæ)
aāæln(a)
33
New cards
D/dx(Logā‚™x)
1/xln(a)
34
New cards
Chain Rule
* Take derivative of outside of parenthesis
* Take derivative of inside parenthesis and keep the original of what was in the parenthesis
* For example, sin(xĀ²+1)ā†’ 2xcos(xĀ²+1)
35
New cards
Product Rule
d/dx first times second + first times d/dx second
36
New cards
Quotient Rule
LoDHi-HiDLo/LoLo
37
New cards
Fundamental Theorem of Calculus
* āˆ«(a to b) f(x) dx = F(b) - F(a)
* Basically saying that Fā€™(x)=f(x)
38
New cards
*f*Ā relativeĀ maxā†’*f* ā€˜Ā goesĀ from
Positive to negative
39
New cards
*f*Ā relativeĀ minā†’*f* ā€˜Ā goesĀ from
Negative to positive