1/41
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Circle formula
r² = (x-a)² + (y-b)²
Ellipse formula
1 = x²/a² + y²/b²
Euler’s formula
eix = cosx + isinx
Dot product
(a.b) = aibi = |a||b|cosθ
cross product
(a × b)i = ∈ijkajbk
Scalar Triple product
a . (b x c) = det[a b c]
Vector triple product
a x (b x c)
Gradient
∇ϕ = (∂ϕ/∂ϕx , ∂ϕ/∂ϕy , ∂ϕ/dz)
Divergence
∇⋅F = ∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z
Curl
∇ x F = det[ i^ , j^ , k^ ; ∂x , ∂y , ∂z ; Fx , Fy , Fz ]
Laplacian (Scalar)
∇²ϕ = ∂²ϕ/∂x² + ∂²ϕ/∂y² + ∂²ϕ/∂z²
Del dot grad
∇⋅∇ϕ = ∇²ϕ
∇⋅(∇×F) = ?
0
∇×(∇ϕ) = ?
0
∇⋅(ϕF) = ?
ϕ(∇⋅F)+∇ϕ⋅F
∇×(ϕF) = ?
∇ϕ×F+ϕ(∇×F)
All 4 vector identities
∇ ⋅ (∇×F) = 0
∇ × (∇ϕ) = 0
∇ ⋅ (ϕF) = ϕ(∇⋅F) + ∇ϕ⋅F
∇ × (ϕF) = ∇ϕ × F + ϕ(∇×F)
Line integral
∫C F⋅dr
Surface integral
∬S F⋅n dS
Volume integral
∭V f(x,y,z) dV
Divergence theorem
∭V (∇⋅F) dV = ∬∂V F⋅n dS
Stokes’ Theorem
∬S(∇×F)⋅n dS = ∮∂S F⋅dr
Material Derivative
D/Dt = ∂/∂t + u . ∇
Continuity equation
∂ρ/∂t + ∇⋅(ρu) = 0
Navier-Stokes (incompressible, steady)
ρ( ∂u/∂t + u⋅∇u ) = −∇p+μ∇2u
Bernoulli’s equation (along streamline, steady)
½ρu² + p + ρgz = constant
Gauss’s law
∇⋅E = ρ/ε0
Gauss for magnetism
∇⋅B = 0
Faraday’s Law
∇ × E= −∂B/∂Bt
Ampere’s Law (with Maxwell correction)
∇ × B = μ₀J + μ₀ε₀ ∂E/dt
Polar coordinates Grad
∇f = ( ∂f/∂r )𝑒̂r + [(1/r )( ∂f/∂θ )]𝑒̂θ
polar coords div
∇⋅F = ( 1/r )[ ∂(rFr) /∂r + ∂Fθ /∂θ ]
polar coords curl
∇ X F = ( 1/r )[ ∂(rFθ) /∂r - ∂Fr /∂θ ]
polar coords laplacian
∇²f = ( 1/r )(∂( r∂f /∂r ) /∂r ) + ( 1/r² )(∂²f /∂θ² )
cylindrical coords grad
∇f = ( ∂f/∂R )𝑒̂R + (1/R ∂f/∂ϕ )𝑒̂θ + ( ∂f/∂z )𝑒̂z
cylindrical coords div
∇⋅F = (1/R)[ ∂(RFR) /∂R + ∂Fϕ /∂ϕ ] + ∂Fz /∂z
cylindrical coords curl
∇ x F = [(1/R)( ∂Fz /∂ϕ ) - ∂Fϕ /∂z ] 𝑒̂R
+ [ ∂FR /∂z - ∂Fz /∂R ] 𝑒̂θ
+ [(1/R)( ∂(RFϕ) /∂R - ∂FR /∂ϕ )] 𝑒̂z
cylindrical coords laplacian
∇²f = (1/R)( ∂( R∂f /∂R ) /∂R )
+ (1/R²)( ∂²f /∂ϕ² )
+ ∂²f /∂z²
Spherical coords grad
∇f = [ ∂f /∂r ] 𝑒̂r
+ [(1/r)( ∂f /∂θ )] 𝑒̂θ
+ [( 1/rsinθ )( ∂f /∂ϕ )] 𝑒̂ϕ
spherical coords div
∇⋅F = [ ∂f /∂r ] 𝑒̂r
+ [(1/r)( ∂f /∂θ )] 𝑒̂θ
+ [( 1/rsinθ )( ∂f /∂ϕ )] 𝑒̂ϕ
spherical coords curl
∇×F =
| 𝑒̂r r𝑒̂θ rsinθ𝑒̂ϕ |
| ∂r ∂θ ∂ϕ | 1 / rsinθ
| Fr rFθ rsinθFϕ |
spherical coords laplacian
∇2f = (1/r² )( ∂ /∂r )( r²∂f /∂r )
+ (1/r²sinθ )( ∂ /∂θ )( sinθ ∂f /dθ )
+ (1/r²sin²θ )( ∂²f /∂ϕ² )