Vectors Flashcards

0.0(0)
studied byStudied by 1 person
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/41

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

42 Terms

1
New cards

Circle formula

r² = (x-a)² + (y-b)²

2
New cards

Ellipse formula

1 = x²/a² + y²/b²

3
New cards

Euler’s formula

eix = cosx + isinx

4
New cards

Dot product

(a.b) = aibi = |a||b|cosθ

5
New cards

cross product

(a × b)i = ∈ijkajbk

6
New cards

Scalar Triple product

a . (b x c) = det[a b c]

7
New cards

Vector triple product

a x (b x c)

8
New cards

Gradient

ϕ = (∂ϕ​/∂ϕx , ∂ϕ​/∂ϕy , ∂ϕ​/dz)

9
New cards

Divergence

∇⋅F = ∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z

10
New cards

Curl

∇ x F = det[ i^ , j^ , k^ ; ∂x , ∂y , ∂z ; Fx , Fy , Fz ]

11
New cards

Laplacian (Scalar)

∇²ϕ = ∂²ϕ​/∂x² + ∂²ϕ​/∂y² + ∂²ϕ/∂z​²

12
New cards

Del dot grad

∇⋅∇ϕ = ∇²ϕ

13
New cards

⋅(×F) = ?

0

14
New cards

×(ϕ) = ?

0

15
New cards

⋅(ϕF) = ?

ϕ(∇⋅F)+ϕ⋅F

16
New cards

×(ϕF) = ?

ϕ×F+ϕ(×F)

17
New cards

All 4 vector identities

∇ ⋅ (∇×F) = 0

∇ × (∇ϕ) = 0

⋅ (ϕF) = ϕ(∇⋅F) + ϕ⋅F

× (ϕF) = ϕ × F + ϕ(∇×F)

18
New cards

Line integral

C ​F⋅dr

19
New cards

Surface integral

SFn dS

20
New cards

Volume integral

V ​f(x,y,z) dV

21
New cards

Divergence theorem

V ​(∇⋅F) dV = ∬∂VF⋅n dS

22
New cards

Stokes’ Theorem

S​(∇×F)⋅n dS = ∮∂SF⋅dr

23
New cards

Material Derivative

D/Dt = ∂/∂t + u . ∇

24
New cards

Continuity equation

∂ρ/∂t + ⋅(ρu) = 0

25
New cards

Navier-Stokes (incompressible, steady)

ρ( ∂u/∂t ​+ u⋅∇u ) = −p+μ∇2u

26
New cards

Bernoulli’s equation (along streamline, steady)

½​ρu² + p + ρgz = constant

27
New cards

Gauss’s law

∇⋅E = ρ/ε0

28
New cards

Gauss for magnetism

∇⋅B = 0

29
New cards

Faraday’s Law

∇ × E= −∂B/∂Bt

30
New cards

Ampere’s Law (with Maxwell correction)

∇ × B = μ₀J + μ₀ε₀ ∂E​/dt

31
New cards

Polar coordinates Grad

∇f = ( ∂f/∂r )𝑒̂r + [(1/r )( ∂f/∂θ )]𝑒̂θ

32
New cards

polar coords div

∇⋅F = ( 1/r )[ ∂(rFr) /∂r + ∂Fθ /∂θ ]

33
New cards

polar coords curl

∇ X F = ( 1/r )[ ∂(rFθ) /∂r - ∂Fr /∂θ ]

34
New cards

polar coords laplacian

∇²f = ( 1/r )(∂( r∂f /∂r ) /∂r ) + ( 1/r² )(∂²f /∂θ² )

35
New cards

cylindrical coords grad

f = ( ∂f/∂R )𝑒̂R + (1/R ∂f/∂ϕ )𝑒̂θ + ( ∂f/∂z )𝑒̂z

36
New cards

cylindrical coords div

∇⋅F = (1/R)[ ∂(RFR) /∂R + ∂Fϕ /∂ϕ ] + ∂Fz /∂z

37
New cards

cylindrical coords curl

∇ x F = [(1/R)( ∂Fz /∂ϕ ) - ∂Fϕ /∂z ] 𝑒̂R
+ [ ∂FR /∂z - ∂Fz /∂R ] 𝑒̂θ
+ [(1/R)( ∂(RFϕ) /∂R - ∂FR /∂ϕ )] 𝑒̂z

38
New cards

cylindrical coords laplacian

∇²f = (1/R)( ∂( R∂f /∂R ) /∂R )
+ (1/R²)( ∂²f /∂ϕ² )
+ ∂²f /∂z²

39
New cards

Spherical coords grad

f = [ ∂f /∂r ] 𝑒̂r
+ [(1/r)( ∂f /∂θ )] 𝑒̂θ
+ [( 1/rsinθ )( ∂f /∂ϕ )] 𝑒̂ϕ

40
New cards

spherical coords div

∇⋅F = [ ∂f /∂r ] 𝑒̂r
+ [(1/r)( ∂f /∂θ )] 𝑒̂θ
+ [( 1/rsinθ )( ∂f /∂ϕ )] 𝑒̂ϕ

41
New cards

spherical coords curl

∇×F =

| 𝑒̂r r𝑒̂θ rsinθ𝑒̂ϕ |
| ∂r θ ϕ | 1 / rsinθ
| Fr rFθ rsinθFϕ |

42
New cards

spherical coords laplacian

2f = (1/r² )( ∂ /∂r )( r²∂f /∂r )
+ (1/r²sinθ )( ∂ /∂θ )( sinθ ∂f /dθ )
+ (1/r²sin²θ )( ∂²f /∂ϕ² )